385 research outputs found

    2D Modelling of Mechanical Stress Evolution and Electromigration in Confined Aluminium Interconnects

    Get PDF
    A complete description for mechanical stress evolution and electromigration in confined Al interconnects, taking into account the microstructure features, is presented in this paper. In the last years there were proposed several 1D models for the time-dependent evolution of the mechanical stress in Al interconnect lines, since the time to failure of the line can be related to the time a critical value of the stress is reached. The present paper extends and improves the existing models in 2D using a two dimensional simulator based on finite element method. Also, the model makes an attempt to relate the stress/vacancy concentration evolution with the early resistance change of the Al lin

    ROBUST STABILITY APPLICATION

    Get PDF
    In this paper it is presented the study of the robust control applied in thermal treatment kilns and is given an example of applying of extremely systems in industry. The technological process has tow main components: the oven wall with incandescent material and heat-treat devices. The differential equation describing the heating devices transfer phenomena, which occurs, by discretisation will obtain the corresponding differential equation. The implicit discretisation scheme used has the advantage of a stable solution.stability, control, thermal treatment, differential equations

    Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    Get PDF
    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of the Al line, that could be [1] a fast technique for prediction of the MTF of a line compared to the conventional (accelerated) tests

    Influence of parameters of welding regime on metallographic structure of materials from a joint welded in corner in „T” form

    Get PDF
    To achieve metal constructions with high importance, it can be used different steels, but steel OL 52.4k has a very wide use due to technological properties and mechanical they present. Metallographic structure of materials of a welded joint is influenced by conditions that occur in the process of welding. In the researches there have been studied the influence of parameters of welding regime on the system of metallographic structure of materials from a welded joint in corner in “T” form. There was taken into account welding process MAG using three welding regimes and using steel plates from OL 52.4k steel with a thickness of 10 / mm

    Some aspects of the human body's hydraulics

    Get PDF
    This paper presents some aspects related to the human body's hydraulics in the desire to make readers aware of how to maintain all the blood vessels of the human body in order to maintain the entire healthy, functional, young, vigorous circulatory system for a while the longest possible. The problem is complex because it has to be viewed from all points of view and not only as an isolated system in the body, having aspects of feedback on the whole physiopathology belonging to the human body. The highly circulating system needs permanent maintenance. Self-maintenance is done through various physiological mechanisms tightly linked to each other, including the lymphatic, digestive, renal, lung, nervous, glandular system… It is not possible to completely separate the physiology of a system from the other adjacent systems because they all work synergistically, being permanently controlled by the central and peripheral nervous system

    Early resistance change and stress/electromigration evolution in near bamboo interconnects

    Get PDF
    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of the Al line with a near-bamboo microstructure, which has been proven to be a fast technique for prediction of the MTF of a line compared to the conventional (accelerated) stres

    Future medicine services robotics

    Get PDF
    It is an entry technique in use recently, albeit in selected centers and represents a further step in the field of minimally invasive surgery. Basically it has the same indications but, at present, is reserved for selected patients. Compared to traditional video-assisted surgery presents some important differences. The surgeon is physically distant from the operative field and sits at a console, equipped with a monitor, from which, through a complex system, controls the movement of the robotic arms. These are fixed the various surgical instruments, tweezers, scissors, dissectors, that team shall present to the operating table to introduce into the cavity operative site. The use of mechanical arms has the advantage of allowing a three dimensional view an image with more stops and to make the most delicate maneuvers purposes and also because the tools are articulated to the distal end. The disadvantage is related to the times longer operative and the difficulty of determining the strength (as can happen in giving the right tension to a surgeon's knot). In the future it can be assumed that robotic surgery will allow, with the development of the experience, the spread of the equipment and improvement of telecommunication systems and data, to operate at ever greater distances. If you think that today, the space centers, you can operate the robots sent to the moon or farther away, it is not hard to believe that it will become usual to operate from side to side of the area, providing you with all the best and specific skills. The first surgical robot called da Vinci, in honor of Leonardo da Vinci, was developed in Silicon Valley by Intuitive Surgical and in 2000 he obtained the authorization of the American Food and Drug Administration (FDA) for use in laparoscopic surgery. The present paper wishes to show briefly several models of the main robots placed in the service of human medicine

    Bone modeling for customized hybrid biological prostheses development

    Get PDF
    Faithful modeling of the femur accounting for bone distribution and material orthotropic behavior is presented. In this study, a biofidel femur Finite Element Model (FEM) has been developed from Computerized Tomography (CT) scans using a specific combination of software’s to correctly represent bone physiology and structural behavior. Proper identification of trabecular bone arrangement and distribution in the proximal diaphysis enabled modeling and definition of material properties. The faithful femur model proposed allows us to correctly account for non-isotropic properties to the proximal end explaining the critical structural role played by trabecular bone that should be taken into account in the design of a new innovative prosthetic system

    Biologically structured materials

    Get PDF
    In this paper bio-tissue mathematical modeling serves as a central repository to interface design, simulation, and tissue fabrication. Finite element computer analyses will be used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and mandible thickness distributions using single and multi-phase continuum material representations of clinical cases of patients implanted with the traditional protocols. New protocols will be hypothesized for the use of the new biologically techno-structured hybrid materials
    corecore