23 research outputs found

    Freeze-In Production of FIMP Dark Matter

    Get PDF
    We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.Comment: 30 pages, 7 figures, PDFLaTex. References adde

    KeV Warm Dark Matter and Composite Neutrinos

    Full text link
    Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.Comment: 12 pages, 2 figures, published versio

    Affleck-Dine dynamics and the dark sector of pangenesis

    Full text link
    Pangenesis is the mechanism for jointly producing the visible and dark matter asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The baryon-symmetric feature means that the dark asymmetry cancels the visible baryon asymmetry and thus enforces a tight relationship between the visible and dark matter number densities. The purpose of this paper is to analyse the general dynamics of this scenario in more detail and to construct specific models. After reviewing the simple symmetry structure that underpins all baryon-symmetric models, we turn to a detailed analysis of the required Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry breaking are considered, with the messenger scale left arbitrary in the latter, and the viable regions of parameter space are determined. In the gauge-mediated case where gravitinos are light and stable, the regime where they constitute a small fraction of the dark matter density is identified. We discuss the formation of Q-balls, and delineate various regimes in the parameter space of the Affleck-Dine potential with respect to their stability or lifetime and their decay modes. We outline the regions in which Q-ball formation and decay is consistent with successful pangenesis. Examples of viable dark sectors are presented, and constraints are derived from big bang nucleosynthesis, large scale structure formation and the Bullet cluster. Collider signatures and implications for direct dark matter detection experiments are briefly discussed. The following would constitute evidence for pangenesis: supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references added; v3: minor changes, matches published versio

    Sterile neutrino dark matter as a consequence of nuMSM-induced lepton asymmetry

    Get PDF
    It has been pointed out in ref.[1] that in the nuMSM (Standard Model extended by three right-handed neutrinos with masses smaller than the electroweak scale), there is a corner in the parameter space where CP-violating resonant oscillations among the two heaviest right-handed neutrinos continue to operate below the freeze-out temperature of sphaleron transitions, leading to a lepton asymmetry which is considerably larger than the baryon asymmetry. Consequently, the lightest right-handed (``sterile'') neutrinos, which may serve as dark matter, are generated through an efficient resonant mechanism proposed by Shi and Fuller [2]. We re-compute the dark matter relic density and non-equilibrium momentum distribution function in this situation with quantum field theoretic methods and, confronting the results with existing astrophysical data, derive bounds on the properties of the lightest right-handed neutrinos. Our spectra can be used as an input for structure formation simulations in warm dark matter cosmologies, for a Lyman-alpha analysis of the dark matter distribution on small scales, and for studying the properties of haloes of dwarf spheroidal galaxies.Comment: 25 pages. v2: many clarifications and references added; published versio

    Hierarchically Acting Sterile Neutrinos

    Get PDF
    We propose that a hierarchical spectrum of sterile neutrinos (eV, keV, 1013−1510^{13-15} GeV) is considered to as the explanations for MiniBooNE and LSND oscillation anomalies, dark matter, and baryon asymmetry of the universe (BAU) respectively. The scenario can also realize the smallness of active neutrino masses by seesaw mechanism.Comment: 4 pages, 1 tabl

    Dark Matter Candidates: A Ten-Point Test

    Full text link
    An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been proposed over the last three decades. Here we present a 10-point test that a new particle has to pass, in order to be considered a viable DM candidate: I.) Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution unchanged? VI.) Is it compatible with constraints on self-interactions? VII.) Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds? X.) Can it be probed experimentally?Comment: 29 pages, 12 figure
    corecore