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Abstract

It has been pointed out in ref. [1] that in the νMSM (Standard Model extended by three

right-handed neutrinos with masses smaller than the electroweak scale), there is a corner in

the parameter space where CP-violating resonant oscillations among the two heaviest right-

handed neutrinos continue to operate below the freeze-out temperature of sphaleron transi-

tions, leading to a lepton asymmetry which is considerably larger than the baryon asymmetry.

Consequently, the lightest right-handed (“sterile”) neutrinos, which may serve as dark mat-

ter, are generated through an efficient resonant mechanism proposed by Shi and Fuller [2].

We re-compute the dark matter relic density and non-equilibrium momentum distribution

function in this situation with quantum field theoretic methods and, confronting the results

with existing astrophysical data, derive bounds on the properties of the lightest right-handed

neutrinos. Our spectra can be used as an input for structure formation simulations in warm

dark matter cosmologies, for a Lyman-α analysis of the dark matter distribution on small

scales, and for studying the properties of haloes of dwarf spheroidal galaxies.
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1. Introduction

Ever since the experimental discovery of neutrino mass differences, there has been a com-

pelling case for the existence of right-handed neutrinos in nature. It turns out, however, to be

difficult to determine the parameters associated with them with any precision. Indeed, given

that right-handed neutrinos are gauge singlets, their Lagrangian contains explicit (Majorana)

mass terms in addition to the usual Yukawa interactions. The known mass differences only

constrain certain combinations of the Yukawa couplings and Majorana masses, so that the

absolute scale of the Majorana masses cannot be fixed from the existing data.

Recently, it has been pointed out [3, 4] that if the Majorana masses are chosen to be

significantly smaller than has been the common choice (this corner of the parameter space

was named νMSM, for “neutrino Minimal Standard Model”), then it appears possible to

find an amazingly complete description of the main cosmological mysteries that cannot be

explained within the Standard Model. Suppose that there are three generations of the right-

handed neutrinos, like there are of all other fermions in the Standard Model. Then the lightest

right-handed, or “sterile” neutrinos, with masses in the keV range, might serve as (warm)

dark matter [5, 2], [6]–[14]1; the two heavier right-handed neutrinos, with masses in the GeV

range and almost degenerate with each other, could account simultaneously for baryogenesis

and the observed active neutrino mass matrix [16, 4]; while a non-minimal coupling of the

Higgs field in this theory to the Ricci scalar might explain inflation [17]. In fact it can be

argued that the νMSM could be a good effective field theory all the way up to the Planck

scale [18] (for a similar argument in a related theory, see ref. [19]).

On the quantitative level, though, it is non-trivial to realize all of these possibilities within

the νMSM. Consider the explanation of dark matter by the lightest sterile neutrinos, for

instance. There are strong experimental constraints from two sides: from the non-observation

of an X-ray signal generated by the decay of the dark matter neutrinos on one hand ([20]–

[31] and references therein), and from structure formation simulations on the other [32]–[36].

Combining these experimental constraints with the results of theoretical computations of

thermal dark matter production due to active-sterile mixing (the so-called Dodelson-Widrow

mechanism) [5, 6, 7, 9, 10, 12] appears in fact to all but exclude the warm dark matter

scenario [34]–[36], [30]2.

Such a negative conclusion is premature, however. First of all, the structure formation

simulations of refs. [34]–[36] assumed the spectrum of the dark matter sterile neutrinos to be

thermal, with possibly a modest shift of the average momentum towards the infrared, while in

reality the deviations from the Fermi-Dirac distribution are substantial [10, 12]. Second, and

even more importantly, it has been pointed out in ref. [1] that in the framework of the νMSM

1Various cosmological and astrophysical phenomena related to the dark matter sterile neutrinos have been

discussed in refs. [15].
2Extending the νMSM by an extra scalar field allows for an additional mechanism for dark matter sterile

neutrino creation which evades these limits [37, 38, 39]; another relaxation follows if the reheating temperature

after inflation is low (in the MeV range) [40, 41, 42].
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it is possible to generate a large leptonic chemical potential surviving down to temperatures

of a few hundred MeV. In this situation the results of the theoretical computation change

dramatically [2, 7], and it becomes easier to explain dark matter with sterile neutrinos.

The purpose of the present paper is to elaborate on the latter possibility. More precisely, we

re-compute the dark matter relic density in this situation with the quantum field theoretic

methods introduced in refs. [11, 12]; analyse uncertainties related to unknown parameters

and poorly known QCD phenomena; and compare with previous computations in the lit-

erature. Our main finding is that if lepton asymmetries in the range nνe/s >∼ 0.8 × 10−5

exist, where nνe refers to the asymmetry in electron-like neutrinos and s is the total entropy

density, then the νMSM can indeed account for the observed dark matter abundance. This

bound can be consolidated once structure formation simulations have been repeated with the

non-equilibrium momentum distributions functions (“spectra”) of the sterile neutrinos that

we derive. In any case, asymmetries in the range nνe/s >∼ 0.8 × 10−5 may be reachable in

the so-called Scenario IIa of parameter values of ref. [1]. Note that the largest possible

asymmetry leading to successful Big Bang Nucleosynthesis corresponds to a chemical poten-

tial |µL/T | <∼ 0.07 at T ∼ 1 MeV (95% CL) [43, 44], meaning nνe/s <∼ 2.5 × 10−3 in our

units (cf. appendix A). The maximal asymmetry which can be produced within the νMSM

is somewhat smaller, nνe/s <∼ 0.7 × 10−3 [1].

It is appropriate to stress that even though our considerations are naturally viewed as a

sequel to the lepton asymmetry generated à la ref. [1], from a practical point of view the origin

of the lepton asymmetry plays no role in the present analysis, nor do the parameters related to

the two heaviest right-handed neutrinos. Indeed the only ingredient entering our computation

is the absolute value of the lepton asymmetry which, as mentioned, we parametrize through

the ratio nνe/s. Recalling that the observed baryon asymmetry is nB/s ≃ (0.9 − 1.0) ×
10−10 [45, 46], we hence need to assume a boost of some five orders of magnitude in the

leptonic sector. Besides νMSM, another possible origin for such an asymmetry could be the

Affleck-Dine mechanism [47], if it takes place below the electroweak scale and is based on a

condensate producing many more leptons than quarks.

Our presentation is organized as follows. In Sec. 2 we generalize the formalism of refs. [11,

12] to the charge-asymmetric situation. The resulting equation for the sterile neutrino abun-

dance is integrated numerically in Sec. 3, and the equation for the sterile neutrino spectrum

in Sec. 4. We discuss the astrophysical consequences of these results in Sec. 5, and conclude in

Sec. 6. In appendix A we recall the relations of our characterization of the lepton asymmetry,

through nνe/s, to a number of other conventions appearing in the literature. A reader only

interested in the phenomenological consequences of our analysis could start directly from

Sec. 5.
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2. Basic formalism

Our starting point is the Lagrangian

L =
1

2
¯̃N1i /∂ Ñ1 −

1

2
M1

¯̃N1Ñ1 − Fα1L̄αφ̃ aRÑ1 − F ∗
α1

¯̃N1φ̃
†aLLα + LMSM , (2.1)

where Ñ1 are Majorana spinors, and the subscript “1” refers to the lightest right-handed

neutrino; repeated indices are summed over; M1 is the Majorana mass that we have chosen

to be real in this basis; Lα are the active lepton doublets; Fα1 are elements of a complex

Yukawa matrix; φ̃ = iτ2φ
∗ is the conjugate Higgs doublet; and aL ≡ (1−γ5)/2, aR ≡ (1+γ5)/2

are chiral projectors.

To compute the abundance of N1 from first principles, we make a number of basic as-

sumptions, following refs. [11, 12]. First of all, we restrict to temperatures below a few GeV,

implying that the electroweak symmetry is broken: 〈φ̃〉 ≃ (v/
√

2, 0), where v ≃ 246 GeV

is the Higgs field vacuum expectation value. Second, we assume that the mixing angles

θ2
α1 ≡ |MD|2α1/M

2
1 , where |MD|α1 ≡ |vFα1|/

√
2, are very small, θα1 <∼ 10−3. Then it is

sufficient to restrict to the leading non-trivial order in a Taylor series in θ2
α1.

The third assumption concerns the flavour structure of the lepton asymmetry. We will only

consider the case when the asymmetries in all active species (νe, eL, eR, νµ, µL, µR, ντ , τL,

τR) are equal. Strictly speaking, this is not satisfied in the νMSM, since the generation of

lepton asymmetries takes place when the reactions changing neutrino flavours freeze out [1].

We make this assumption in order to keep the discussion as simple as possible, and also

because it yields the most conservative constraints, leading to the largest sterile neutrino

abundance and consequently weakening the X-ray bounds. We discuss the general formalism

applicable in this setting in Sec. 2.1.

At the same time, there is no reservoir replenishing the lepton asymmetry if a part of it is

converted to right-handed neutrinos: the CP-violating reactions generating the asymmetry

cease to take place at temperatures above a few GeV [1]. Together with the third assumption

this completely fixes the time evolution of the lepton asymmetry; this will be demonstrated

in Sec. 2.2.

The fourth and final assumption asserts that the density of the right-handed neutrinos

produced is below its equilibrium value. This assumption is necessary for the validity of the

quantum field theoretic formulation of refs. [11, 12]; on the other hand, it may be violated

in certain parts of the parameter space. In Sec. 2.3 we outline a phenomenological way to

correct for a possible violation.

2.1. Results in terms of a generic lepton asymmetry

Under the assumption of a chemically equilibrated lepton asymmetry among the active

species, the formal determination of the sterile neutrino production rate proceeds almost
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exactly as in ref. [11], with the only difference that the density matrix of the Minimal Stan-

dard Model (MSM) now takes the form3

ρ̂MSM = Z−1
MSM exp[−β(ĤMSM − µLL̂MSM)] . (2.2)

Here β ≡ 1/T ; µL 6= 0 unlike in ref. [11]; and L̂MSM is the total lepton number operator

within the MSM,

L̂MSM ≡
∫

d3x
∑

α=e,µ,τ

[

ˆ̄lαL γ0 l̂αL + ˆ̄lαR γ0 l̂αR + ˆ̄ναL γ0 ν̂αL

]

, (2.3)

with le ≡ e, lµ ≡ µ, lτ ≡ τ ; and ψ̂L ≡ aLψ̂, ψ̂R ≡ aRψ̂.

According to ref. [11], the phase space density f1(t,q) of right-handed neutrinos in either

helicity state s,

f1(t,q) ≡
∑

s=1,2

dN
(s)
1 (t,x,q)

d3xd3q
, (2.4)

obeys the equation
(

∂

∂t
−Hqi

∂

∂qi

)

f1(t,q) = R(T,q) . (2.5)

Here H is the Hubble parameter, H = d ln a(t)/dt, and qi are the spatial components of

the physical momentum q, defined in a local Minkowskian frame. Repeating the analysis of

ref. [11] with µL 6= 0, the source term reads

R(T,q) =
1

(2π)3q0

3
∑

α=1

|MD|2α1Tr
{

/QaL

[

nF(q0 − µL)ραα(Q) + nF(q0 + µL)ραα(−Q)
]

aR

}

,

(2.6)

where nF(q) ≡ 1/[exp(q/T )+1] is the Fermi distribution function; ραα is the spectral function

related to the propagator of the active neutrino of generation α; and Q is the on-shell four-

momentum of the right-handed neutrino, i.e. Q2 = M2
1 . Noting that the solution of Eq. (2.5)

only depends on q ≡ |q|, it can be written as [12]

f1(t0, q) =

∫ ∞

T0

dT

T 3

M0(T )

3c2s(T )
R

(

T, q
T

T0

[

heff(T )

heff(T0)

]
1

3

)

, (2.7)

where M0(T ) ≡ MPl

√

45/4π3geff(T ); geff(T ) parametrizes the energy density e as e ≡
π2T 4geff(T )/30; and heff(T ) parametrizes the entropy density s as s ≡ 2π2T 3heff(T )/45.

Moreover, c2s is the sound speed squared, given by 1/c2s(T ) = 3 + Th′eff(T )/heff(T ). Note

that in Eq. (2.7), the chemical potential µL may be taken to depend on T in any way, to be

specified later on from physical considerations.

3In general, different chemical potentials have to be introduced for different leptonic flavours.
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To derive an expression for ραα, we follow the steps in Sec. 3.2 of ref. [11], but without

assuming anything about the symmetry properties of the active neutrino self-energy for the

moment. The Euclidean propagator (cf. Eq. (3.10) of ref. [11]) then becomes

ΠE
αα(Q̃) = aL

1

−i /̃Q + i /̃Σ (−Q̃)
aR = aL

i /̃Q − i /̃Σ (−Q̃)

[Q̃− Σ̃(−Q̃)]2
aR . (2.8)

We have left out the flavour indices from the active neutrino self-energy Σ̃ to compactify the

notation somewhat, and the tildes are a reminder of Euclidean conventions.

Carrying out the Wick rotation, we can transform Eq. (2.8) into a retarded Minkowskian

propagator (cf. Eq. (3.11) of ref. [11]):

ΠR
αα(q0,q) = ΠE

αα(−iq0,q) = aL
− /Q + /Σ (−Q)

Q2 − 2Q · Σ(−Q) + Σ2(−Q)
aR . (2.9)

Writing finally Σ(q0±i0+,q) ≡ ReΣ(Q)±i Im Σ(Q) and correspondingly Σ(−[q0±i0+],−q) =

ReΣ(−Q) ∓ i Im Σ(−Q), allows to obtain (cf. Eqs. (3.1), (3.4) of ref. [11])

ραα(Q) =
1

2i

[

ΠR
αα(q0 + i0+,q) − ΠR

αα(q0 − i0+,q)
]

(2.10)

= aL
−SI(−Q)[ /Q − Re /Σ (−Q)] − SR(−Q) Im /Σ (−Q)

S2
R(−Q) + S2

I (−Q)
aR , (2.11)

where

SR(−Q) ≡ [Q− ReΣ(−Q)]2 − [Im Σ(−Q)]2 , (2.12)

SI(−Q) ≡ −2[Q− ReΣ(−Q)] · Im Σ(−Q) . (2.13)

These expressions can trivially be written also for ραα(−Q), and the results can then be

inserted into Eq. (2.6). The outcome constitutes a generalization of Eq. (3.12) of ref. [11].

To compactify the resulting equations somewhat, we make the following simplifications. We

note, first of all, that in the imaginary part Im Σ, the chemical potential changes the thermal

distribution functions of the on-shell leptons that appear in the intermediate states. Given

that we are interested in the case µL/T ≪ 1.0, however, these changes are not important,

and will be ignored in the following. Then we can assume that Im Σ does not get modified

by µL and, in particular, that Im Σ(−Q) = Im Σ(Q), as is the case for µL = 0.

As far as ReΣ is concerned, we note that its general structure can be written as

Re /Σ αα(Q) = /Qaαα(Q) + /u bαα(Q) + /u cαα(Q) , (2.14)

where u = (1,0). We note that the function aαα(Q) can be ignored, since it is small compared

with the tree-level term /Q . On the other hand the latter structures in Eq. (2.14) do not appear

at tree-level, and need to be kept. We have separated two terms: a function bαα(Q) odd in Q,

appearing already in the charge symmetric situation, as well as a function cαα(Q), defined to
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be even in Q. The function cαα(Q) must be proportional to the leptonic chemical potential

(or leptonic net number densities), and it is this function which plays an essential role in the

following. The explicit expression for cαα(Q) can be extracted from ref. [48]; for q0 ≪ mW ,

we can work to first order in an expansion in 1/m2
W , and then the result reads

cαα = 3
√

2GF (1 + 4 sin2θW )nνe , (2.15)

where GF = g2
w/4

√
2m2

W is the Fermi constant and, as mentioned, we assumed that all active

leptonic densities are equal: nνe = neL
= neR

= nµL
= ... .4

With these simplifications, we can write

/Q + Re /Σ (Q) ≈ /Q + /u (b+ c) , (2.16)
[

Q+ Re Σ(Q)
]2

≈ M2
1 + 2q0(b+ c) + (b+ c)2 , (2.17)

/Q − Re /Σ (−Q) ≈ /Q + /u (b− c) , (2.18)
[

Q− Re Σ(−Q)
]2

≈ M2
1 + 2q0(b− c) + (b− c)2 , (2.19)

where b ≡ bαα(Q), c ≡ cαα(Q). Furthermore, all appearances of ImΣ can be written in terms

of the objects

IQ ≡ Tr
[

/QaL Im /Σ (Q)aR

]

= 2 Q · Im Σ(Q) , (2.20)

Iu ≡ Tr
[

/u aL Im /Σ (Q)aR

]

= 2 u · Im Σ(Q) . (2.21)

Note, in particular, that Im /Σ has a structure analogous to Eq. (2.14), with one term propor-

tional to /Q and another to /u , and that consequently even [Im Σ]2 can be written in terms

of the structures in Eqs. (2.20), (2.21), as

[

Im Σ(Q)
]2

=
−I2

Q + 2q0IQIu −M2
1 I

2
u

4q2
. (2.22)

Inserting these simplifications into Eqs. (2.6), (2.11)–(2.13), we finally obtain

R(T, q) ≈ 1

(2π)3q0

∑

α=e,µ,τ

|MD|2α1 ×

×
{

nF(q0 + µL)
2SI(Q)[M2

1 + q0(b+ c)] − SR(Q)IQ
S2

R(Q) + S2
I (Q)

+ (c→ −c, µL → −µL)

}

, (2.23)

where

SR(Q) = M2
1 + 2q0(b+ c) + (b+ c)2 +

I2
Q − 2q0IQIu +M2

1 I
2
u

4q2
, (2.24)

SI(Q) = IQ + (b+ c)Iu . (2.25)

4 In general, cαα =
√

2GF [(1 + 2xW )nlαL
− (1 − 2xW )

P

β 6=α
nlβL

+ 2xW

P

β
nlβR

+ 2nνα +
P

β 6=α
nνβ

],

where xW ≡ sin2θW.
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We remark that the production of the dark matter sterile neutrinos, with masses in the

keV range, takes place at temperatures below a few GeV (cf. Fig. 2 below). In this case, like

already at µL = 0, it is numerically a very good approximation to set the term Iu to zero,

whereby Eqs. (2.24), (2.25) simplify further.

Although the formulae given are valid beyond perturbation theory, a practical application

does make use of approximate perturbative expressions for the functions b, c and IQ. It is

important to realise that at the point of a resonance, where some of the “large” terms (M2
1 +

2q0b and ±2q0c) cancel against each other, the magnitude of the remainder is determined by

higher order terms ((b±c)2 and IQ). A consistent treatment to a certain order in perturbation

theory would hence require a correspondingly precise (2-loop) determination of the large

terms 2q0b, 2q0c. At the same time, in a practical application we are not sitting precisely

at the point of a resonance, but integrate over its contribution, so that for instance a slight

misplacement of the precise temperature at which the resonance takes place plays little role.

Consequently, we continue to use 1-loop expressions for the functions b and c throughout5.

Nevertheless, as we will see, the fact that at the point of the resonance, Im Σ plays a role also

in the denominator, will imply that a large Im Σ can also lead to a decreased abundance, in

contrast to the case of non-resonant production, where Im Σ essentially only plays a role in

the numerator. For a recent discussion of various resonance-related phenomena, see ref. [49].

To be more quantitative about the role of the resonance, we can work out its contribution

to the production rate semi-analytically. To a good approximation, the resonance is at the

point where the function

F(T ) ≡M2
1 + 2q0(b− c) (2.26)

vanishes (this comes from the latter term in Eq. (2.23), after the insertion of Eq. (2.24)).

Around this point, the production rate in Eq. (2.23) can be approximated as

R(T, q) ≈ nF(q0 − µL)

(2π)3q0

∑

α=e,µ,τ

|MD|2α1[M
2
1 + q0(b− c)]

2IQ
F2(T ) + I2

Q

(2.27)

≈ nF(q0 − µL)

(2π)22q0

∑

α=e,µ,τ

|MD|2α1M
2
1 δ(F(T )) , (2.28)

where we made use of the fact that IQ is very small, in order to identify a representation of

the Dirac delta-function. Inspecting the expressions for b and c, the function F is positive

at very low temperatures (because M2
1 dominates) and at very large temperatures (because

b dominates), but for sufficiently large nνe/s and sufficiently small q/T , the term c overtakes

the others at intermediate temperatures; there are then two zeros of F , and it turns out to be

the lower among these that gives the dominant contribution. We denote the corresponding

temperature by TR. Eq. (2.7) can now be integrated, to yield

f1(t0, q) ≈
∑

α=e,µ,τ

|MD|2α1

1

T 3
R

M0(TR)

3c2s(TR)

nF(q0 − µL)

(2π)22q0
M2

1

|F ′(TR)|

∣

∣

∣

∣

F(TR)=0

. (2.29)

5For all quantities not specified explicitly in this section, we use the expressions given in ref. [11].
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2.2. Time evolution of the lepton asymmetry

The main formula of the previous section, Eq. (2.23), depends on the leptonic chemical

potential, µL, and on the lepton asymmetry, nνe, the two of which are related through

Eq. (A.3). However, the dependence of these quantities on the time (or temperature) has

been left open. We now need to insert further physical input in order to fix this dependence.

It is important to realize, first of all, that no reservoir exists for the lepton asymmetry: as

explained in ref. [1], the lepton asymmetry was generated by CP-violating processes active

at temperatures around a few GeV, which subsequently ceased to operate.

Second, the mass of the lightest right-handed neutrino, M1, is much below the temperature,

M1 ≪ T . Therefore lepton asymmetry violating processes, whose rate is proportional to M2
1 ,

can to a very good approximation be neglected. In other words, dark matter sterile neutrinos

and the active leptons can be characterized by a conserved quantity, which we may call the

total lepton number. In fact, this physics is effectively already built in in Eq. (2.6), which

shows that the rate for generating any of the two sterile neutrino states is a sum of two terms,

with opposite chemical potentials appearing in them, as is appropriate for “particles” and

“anti-particles”.

As a result of these two facts, the resonant transitions from active to sterile neutrinos, or

more precisely the C-odd part of Eq. (2.6), cause the original asymmetry to get depleted.

If the resonance is very effective, the depletion is fast and thereby rapidly terminates the

resonance phenomenon.

To be more quantitative, we make the (optimistic) assumption that the flavour and chi-

rality changing processes within the active generations are fast enough to stay in thermal

equilibrium. There is then a reservoir of nine spin-1/2 degrees of freedom (three generations,

each with left-handed neutrinos and both-handed charged leptons) converting to sterile neu-

trinos. Denoting the two terms in Eq. (2.6) by R− and R+, respectively, Eq. (2.5) can then

be split and subsequently completed into a closed set of three equations (we also adopt an

ansatz removing the terms proportional to the Hubble parameter from Eq. (2.5)):

d

dt
f−

(

t, q(t0)
a(t0)

a(t)

)

= R−

(

T, q(t0)
a(t0)

a(t)

)

, (2.30)

d

dt
f+

(

t, q(t0)
a(t0)

a(t)

)

= R+

(

T, q(t0)
a(t0)

a(t)

)

, (2.31)

d

dt

{

9 a3(t)nνe(t)
}

= a3(t)

∫

d3q
[

R+(T, q) −R−(T, q)
]

, (2.32)

where the dark matter spectrum f1 is now represented by the sum f1(T, q) = f−(T, q) +

f+(T, q). The structure of these equations is such that the total lepton charge in a comoving

volume,

Ltot ≡ a3(t)
{

9nνe(t) +

∫

d3q
[

f−(t, q) − f+(t, q)
]}

, (2.33)

indeed remains conserved, as must be the case for M1 → 0.
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Note that within the approximation of Eq. (2.28), the term R+ could be omitted from

Eqs. (2.30)–(2.32), which would simplify the system somewhat. Another practical simplifica-

tion is to solve the equations in terms of the temperature rather than the time, as we already

did in Eq. (2.7).

A rough estimate for when the depletion has a substantial impact can be obtained as follows.

If all of the original lepton asymmetry converts to sterile neutrinos, then n1/s ≥ 9nνe/s, where

s is the total entropy density, and

n1(t0) ≡
∫

d3q f1(t0,q) . (2.34)

Therefore the depletion is substantial if nνe/s <∼ n1/9s. Evaluating the right-hand side of

this inequality for the case that sterile neutrinos account for all of dark matter, Eq. (3.3), we

get nνe/s <∼ 4.0 × 10−4 × keV/9M1, i.e.

M1

keV
<∼ 45

(

106nνe

s

)−1

. (2.35)

In other words, for a small initial asymmetry, the depletion has a significant impact at all

the masses, while for a large initial asymmetry, the effect of the depletion is subdominant

(because there is more to deplete), unless the mass is small.

2.3. Back reaction and equilibration

The derivation of the formulae that our work is based upon, Eqs. (2.30)–(2.32), contains the

assumption that the particles produced do not thermalize, i.e., that their density remains

below the equilibrium value at all times. Let us investigate the validity of this assumption.

It is relatively easy to establish that the total number density of the sterile neutrinos

produced does remain significantly below the equilibrium value. Indeed, the density of the

sterile neutrinos is constrained from above by Eq. (3.3), and consequently

n1(T0)

neq(T0)
<∼ 4.0 × 10−4 s(T0)

neq(T0)

keV

M1
≈ 9.64 × 10−4 heff(T0)

keV

M1

<∼ 0.072
keV

M1
, (2.36)

where we inserted neq(T0) = 3ζ(3)T 3
0 /2π

2 (cf. Eq. (A.4)) as well as heff(T0) <∼ 75 correspond-

ing to T0 <∼ 1 GeV [50]. Thereby the lightest sterile neutrinos appear indeed to be out of

equilibrium in the whole range M1/keV ≥ 0.1 that we are interested in.

It must be realized, however, that the inequality (2.36) is not sufficient to guarantee the

absence of problems. Indeed, the spectrum of the sterile neutrinos produced is strongly tilted

towards the infrared [2, 7]. Given that we are considering fermions, it must then be checked

that the Pauli exclusion principle is not violated at small momenta. Although an exact

quantum field theoretic treatment would guarantee this automatically, the assumption of a
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non-thermal result in the derivation of Eq. (2.23) means that this consideration now enters

as an additional ingredient. We refer to the dynamics that prevents an excessive growth of

the fermionic density at small momenta as “back reaction”.

Motivated by Boltzmann equations, and recalling our normalization (cf. Eq. (2.4)), we

expect that the way that back reaction works is to modify the source terms for the distribution

functions f−, f+ (cf. Eqs. (2.6), (2.30), (2.31)) by replacing

nF(q0 − µL)

(2π)3
→ nF(q0 − µL)

(2π)3
− f− ,

nF(q0 + µL)

(2π)3
→ nF(q0 + µL)

(2π)3
− f+ . (2.37)

However, since this recipe would be purely phenomenological at this stage, and since the

resulting equations are quite difficult to solve numerically6, we follow a simpler approach

in the following. Indeed, we first solve Eqs. (2.30)–(2.32) without back reaction, yielding

the distribution functions which we denote by f
(0)
− , f

(0)
+ . Subsequently, we construct the

approximants

f∓ ≃
nF(q0∓µL)

(2π)3
· f (0)

∓

nF(q0∓µL)

(2π)3
+ f

(0)
∓

. (2.38)

This amounts to a rough iterative solution of the structures suggested by Eq. (2.37); guar-

antees that f∓ never exceed the equilibrium distributions nF(q0 ∓ µL)/(2π)3; and, for f∓ ≪
nF(q0 ∓ µL)/(2π)3, yields the correct result f∓ = f

(0)
∓ .

In order to estimate the practical importance of the back reaction, we have determined our

main observables (cf. Secs. 3, 4) for a number of parameter values both from f
(0)
∓ and f∓.

We return to the corresponding error estimates in connection with the numerical data.

3. Sterile neutrino abundance

The task now is to evaluate the integral in Eq. (2.7), with the lepton asymmetry evolved

according to Eq. (2.32), producing the distribution function f1(t0, q), with q ≡ |q|; and

then to integrate over q, to get the total number density n1 (the order of the integrations

over T and q can of course be interchanged). We choose t0 to be the time corresponding

to T0 = 1 MeV, below which active neutrinos start to decouple. In order to present the

numerical results, we start by introducing some further notation.

First of all, it is conventional to express the mixing angle as sin22θα1. For the very small

Yukawa couplings that we are interested in, it is an excellent approximation to write

sin22θα1 = 4θ2
α1 = 4

|MD|2α1

M2
1

. (3.1)

6If the spectra f∓ do not appear in R∓ on the right-hand side, we can integrate over momenta in Eqs. (2.30),

(2.31), to obtain a coupled set of ordinary differential equations for integrated densities; on the contrary, if

the spectra do appear in R∓ on the right-hand side, modes with different momenta q couple to each other and

need to be solved simultaneously, which makes the problem significantly harder.
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Second, we introduce a total mixing angle as

sin22θ ≡
∑

α=e,µ,τ

4θ2
α1 , (3.2)

which is the quantity appearing in the X-ray constraints to be discussed below (cf. Fig. 4).

Now, we can write the total right-handed neutrino density as n1(t0) ≡
∑

α=e,µ,τ nα1(t0),

where nα1 is the contribution from active flavour α to the dark matter abundance. This

contribution can conveniently be characterized through the yield parameter Yα1 ≡ nα1/s.

The corresponding relative energy fraction is Ωα1 ≡ M1nα1/ρcr = M1Yα1/(ρcr/s). Inserting

ρcr/s ≈ 3.65×10−9h2 GeV from Particle Data Group [45], and noting that Ωα1h
2 can amount

to at most the experimentally known dark-matter density, Ωdmh
2 = 0.1143 ± 0.0034 (68%

CL) [46], we obtain an upper bound on Yα1:

Yα1 <∼ 4.0 × 10−4 × keV

M1
. (3.3)

Since Yα1 depends monotonously (though non-linearly, because of the depletion discussed in

Sec. 2.2) on sin22θα1, this equation yields an upper bound on the mixing angle.

Following ref. [12], we concentrate particularly on two flavour structures. In the non-

resonant case, for a fixed mixing angle, a hierarchy Ye1 > Yµ1 > Yτ1 can be observed [12],

because heavier scatterers suppress the production rate. The largest abundance, and the

most stringent upper bound on sin22θ, is then obtained with

|MD|e1 6= 0 , |MD|µ1 = |MD|τ1 = 0 “case 1” , (3.4)

while the smallest relic abundance and the weakest upper bound on sin22θ is obtained when

|MD|τ1 6= 0 , |MD|e1 = |MD|µ1 = 0 “case 2” . (3.5)

As already mentioned, in the resonant case the roles of what leads to the strongest and weakest

upper bound may get interchanged, because the structure of Eq. (2.23) is fairly complicated,

but it appears that these two cases should still capture the most extreme possibilities.

To integrate Eqs. (2.7), (2.32) in practice, we set the upper limit of the T -integration to

Tmax = 4 GeV where R(T, q) is vanishingly small, and the lower limit to T0 = 1 MeV. We first

integrate over q, and then evolve nα1, Yα1 and nνe/s through coupled ordinary differential

equations in T . This is repeated with several sin22θ in order to find the value satisfying the

constraint in Eq. (3.3). Our numerical implementation follows that in ref. [12]. In particular,

as mentioned above, Im Σ can be evaluated just as in the case without a lepton asymmetry.

At the same time, the existence of a narrow resonance does make the integrations over q and

T much more demanding than in the charge-symmetric case; most importantly, the resolution

in the q-direction needs to be significantly increased.

We also remark that at small M1/keV and large asymmetries, a direct numerical integra-

tion becomes increasingly difficult, but at the same time Eq. (2.29) becomes more accurate.
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Figure 1: Examples of the T -evolution of the lepton asymmetry nνe
/s (cf. Sec. 2.2), for a fixed

M1 = 3 keV. Left: α = e. Right: α = τ . Note that our results differ even qualitatively from ref. [14]

where the asymmetry crosses zero at some temperature.

However, the asymmetry gets rapidly depleted in this regime, so that in fact Eq. (2.29) is a

good approximation only at the early stages of the resonance. We have found that a work-

able method is to approximate R as a sum of a C-odd and C-even part; the C-odd part is

approximated by Eq. (2.29), while the C-even part, which dominates for small asymmetries,

is approximated by the full R from ref. [12], with µL equal to zero. We have checked that

the results obtained this way extrapolate, within our resolution, to the “exact” results which

can be reliably determined at large masses, M1 >∼ 10 keV.

In Fig. 1 we show examples of the evolution of the lepton asymmetry for various initial

values. It can be observed that the resonance is quite narrow, and quite effective; in partic-

ular, for nνe/s <∼ 10−6, most of the initial lepton asymmetry is rapidly converted to sterile

neutrinos, so that the resonance becomes ineffective. Sterile neutrinos are then dominantly

produced thermally, like in ref. [12], and the mixing angle needs to be large. If the lepton

asymmetry reservoir were smaller, for instance with three components rather than nine, then

the depletion would be even more rapid.

In Fig. 2 we show the resonance temperatures (where existent) for two momenta and

various asymmetries, as a function of the mass M1. We note that for M1 of a few keV, the

production peaks at temperatures very close to the QCD crossover. This introduces severe

hadronic uncertainties to the results, as will be discussed below.

In Fig. 3 we show the upper bound on the mixing angle following from Eq. (3.3), for

nνe/s = 16.3 × 10−6. This value has been chosen in order to allow for a comparison with

fig. 1 of ref. [51]. It can be seen that at large masses, M1 >∼ 3 keV, the general order of
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Figure 2: The resonance temperature corresponding to Eq. (2.29), for the modes q/T0 = 1 and

q/T0 = 3, with T0 = 1 MeV. Left: α = e. Right: α = τ . It is seen that, for a given M1, the resonance

first affects the smallest values of q/T0, and that the resonance extends to larger M1 with increasing

asymmetry (the asymmetry is indicated in units of 106nνe
/s on top of the curves).

magnitude of our result is remarkably close to the result of ref. [51], despite the fact that

this work was using a simplified kinetic equation and different approximations. On the other

hand, at small masses, where the depletion discussed in Sec. 2.2 is effective, the results are

dramatically different.

In Fig. 3 we have also considered the effects of two sources of hadronic uncertainties: from

the equation-of-state, which is defined to correspond to a 20% rescaling of the pseudocrit-

ical temperature of the QCD crossover; and from hadronic scatterings, which is defined to

correspond to evaluating the hadronic contributions to the vector and axial current spectral

functions with non-interacting quarks, and an effective number Nc = 0 or Nc = 3 of colours.

For justification and more details on this phenomenological but nevertheless conservative

procedure, we refer to Sec. 5 of ref. [12]. For plotting the dashed and dotted lines in Fig. 3,

we have simultaneously set both uncertainties to their maximal values. It is seen that the

resulting error depends strongly on parameters, but can be as large as 50%.

The theoretical upper bound from Eq. (3.3) is compared with experimental constraints

(from the non-observation of any X-ray sterile neutrino decay peak in various presumed dark

matter concentrations) in Fig. 4. A more detailed discussion concerning the implications of

Fig. 4 follows in Sec. 5.

Finally, we note that the plots in this section were produced without taking into account the

back reaction discussed in Sec. 2.3, i.e., by using the distributions f
(0)
∓ . By recomputing Yα1

for a number of masses and asymmetries from the corrected distributions f∓, we find that the
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Figure 3: The parameter values that, according to our theoretical computation, lead to the correct

dark matter abundance in the Shi-Fuller scenario [2]; if additional sources are present, sin22θ must

lie below the curves shown (cf. Eq. (3.3)). For better visibility, the results have been multiplied by

M1/keV. The grey region between case 1 (lower solid line on the left, upper solid line in the middle and

on the right) and case 2 (other solid line) corresponds to different patterns of the active-sterile mixing

angles, cf. Eqs. (3.4), (3.5). The dotted and dashed lines correspond to one of these limiting patterns

with simultaneously the uncertainties from the equation-of-state and from hadronic scatterings set to

their maximal values. The thick dotted line marked with “Abazajian et al” shows the result in Fig. 1

of ref. [51] (the case L = 0.003).

errors are maximal, ∼ 25%, for small masses, M1 <∼ 3 keV, and intermediate asymmetries,

nνe/s ∼ 10−20×10−6. For larger masses and other asymmetries, the error from the omission

of the back reaction is typically below 10%, which we estimate to be well below our other

systematic uncertainties.

4. Sterile neutrino spectrum

We now move from the integrated total sterile neutrino abundance, Eq. (2.34), to the mo-

mentum distribution function, Eq. (2.7). The physics context where this plays a role is

that of structure formation, particularly at the smallest scales (Lyman-α data). The cor-

responding constraints are considered to be subject to more uncertainties than the X-ray

bounds, both as far as direct observational issues are concerned, as well as with regard to
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Figure 4: The central region of Fig. 3, M1 = 0.3 . . .100.0 keV, compared with regions excluded

by various X-ray constraints [22, 25, 30, 31], coming from XMM-Newton observations of the Large

Magellanic Cloud (LMC), the Milky Way (MW), and the Andromeda galaxy (M31). SPI marks the

constraints from 5 years of observations of the Milky Way galactic center by the SPI spectrometer on

board the Integral observatory.

dark matter simulations, which have not been carried out with actual non-equilibrium spec-

tra so far. Nevertheless, adopting a simple recipe for estimating the non-equilibrium effects

(cf. Eq. (5.1)), the results of refs. [34, 35] can be re-interpreted as the constraints M1 >∼ 11.6

keV and M1 >∼ 8 keV, respectively (95% CL), at vanishing asymmetry [12]. Very recently

limits stronger by a factor 2–3 have been reported [36]. We return to how the constraints

change in the case of a non-zero lepton asymmetry in Sec. 5. We note, however, that the

most conservative bound, the so-called Tremaine-Gunn bound [52, 53], is much weaker and

reads M1 >∼ 0.3 keV [54], which we have chosen as the lower end of the horizontal axes in

Figs. 4, 6.

In Fig. 5 we show examples of the spectra, for a relatively small mass M1 = 3 keV (like

in Fig. 1), at which point the significant changes caused by the asymmetry can be clearly

identified. The general pattern to be observed in Fig. 5 is that for a small asymmetry, the

distribution function is boosted only at very small momenta. Quantities like the average

momentum 〈q〉s then decrease, as can be seen in Fig. 6. For large asymmetry, the resonance

affects all q; the total abundance is strongly enhanced with respect to the case without a

resonance, but the shape of the distribution function is less distorted than at small asymmetry,

so that the average momentum 〈q〉s returns back towards the value in the non-resonant case.

Therefore, for any given mass, we can observe a minimal value of 〈q〉s in Fig. 6, 〈q〉s >∼ 0.3〈q〉a.
This minimal value is remarkably independent of M1, but the value of asymmetry at which
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Figure 5: The distribution function fα1(t0, q), for T0 = 1 MeV and M1 = 3 keV, normalised to the
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be compared with refs. [2, 7]: the general feature of strong enhancement at small momenta is the

same, but our distribution functions show more structure. The case nνe
/s = 16× 10−6 is particularly

complicated (and sensitive to uncertainties), since the resonance happens to lie just on top of the

QCD crossover, at T ∼ 150 − 200 MeV, cf. Figs. 1–3.

it is reached decreases with increasing M1.

Let us stress, however, that the values in Fig. 6 were produced without taking into account

the back reaction discussed in Sec. 2.3, i.e., by using the distributions f
(0)
∓ . By recomputing

〈q〉s/〈q〉a for a number of masses and asymmetries from the approximatively corrected distri-

butions f∓ (shown in Fig. 5), we find that for small masses, M1 <∼ 3 keV, and intermediate

asymmetries, nνe/s ∼ 10− 20× 10−6, the results in Fig. 6 may be too small by up to ∼ 25%.

Thus, for small masses, the minimal average momentum may be better approximated as

〈q〉s >∼ 0.4〈q〉a. For larger masses and other asymmetries, the error from the omission of the

back reaction is typically below 10%, which we estimate to be below our other systematic

uncertainties.

5. Astrophysical constraints

The purpose of the present section is to combine the results of the previous two sections, and

derive the astrophysical constraints that follow from them. Let us start by briefly recapitu-

lating, once more, the two different types of considerations that we have carried out.

First of all, the theoretical computation described in Sec. 3 produces, for a given mass M1

and mixing angle sin22θ, a definite total abundance of sterile neutrinos. Requiring that this
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abundance account for all of the observed energy density in dark matter, leads to the (lepton

asymmetry dependent) mass–angle relation shown in Fig. 4.

The most direct constraint on the sterile neutrino dark matter scenario comes from com-

paring these curves with X-ray observations (Fig. 4). For nνe/s = 0.0 we are in the allowed

region only for M1 ≤ 3 keV. Increasing the asymmetry to nνe/s ≃ 8 × 10−6 opens suddenly

a whole range of allowed mass values, up to M1 ≃ 25 keV. Increasing the asymmetry further

relaxes the upper bound even more but rather slowly; for instance, if the asymmetry is in-

creased to nνe/s ≃ 25×10−6, then we read from Fig. 4 the upper bound M1 <∼ 40 keV, while

the maximal allowed asymmetry nνe/s ≃ 2500× 10−6 yields the upper bound M1 <∼ 50 keV.

Another important effect comes from the modification of the sterile neutrino spectrum

through a lepton asymmetry. As already found in ref. [2], the non-equilibrium spectrum

of the dark matter sterile neutrinos created in the presence of a lepton asymmetry is very

different from the thermal one. Some examples are shown in Fig. 5.

Now, an observation of small scale structures in the Lyman-α data puts an upper bound

on the free-streaming length and, consequently, on the average velocity of the dark matter

particles. This converts to a lower bound on the inverse velocity, which, in the absence of an

actual analysis with non-equilibrium spectra, can be roughly estimated as [32]

M1
〈q〉a
〈q〉s

>∼ M0 ⇔ M1 >∼ M0
〈q〉s
〈q〉a

, (5.1)

where 〈q〉a and 〈q〉s are the average momenta of active and sterile neutrinos, respectively, at

the moment of structure formation, and the value of M0 is M0 ≃ 14 keV (95% CL) according
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to ref. [34] (or M0 ≃ 10 keV at 99.9% CL). According to ref. [35] the bound is somewhat

weaker, while according to ref. [36] it could be as strong as M0 ≃ 28 keV (95% CL). Let us

start by considering the most conservative bound M0 = 10 keV.7

The dependence of 〈q〉s/〈q〉a on M1 and the lepton asymmetry is shown in Fig. 6. Quite

interestingly, this ratio can decrease to 0.3 (or 0.4 at small M1, cf. end of Sec. 4) for a

certain range of asymmetries. However, 〈q〉s/〈q〉a does not decrease further with increasing

asymmetry, but increases again. Therefore, the lower limit M0 = 10 keV corresponds to

M1 >∼ 4 keV.

Combining now the two constraints (from X-rays, Fig. 4, and from structure formation,

Eq. (5.1)), we observe that a solution satisfying both constraints exists for nνe/s >∼ 8×10−6.

The solution corresponds to masses M1 ≃ 4−25 keV and mixing angles sin22θ ≃ 8×10−10 −
2 × 10−12. If the lepton asymmetry is increased, larger masses and smaller mixing angles

become possible.

Let us then consider the case M0 ≃ 28 keV [36]. Using the minimal value 〈q〉s/〈q〉a ∼ 0.3,

M0 ≃ 28 keV corresponds to M1 >∼ 28 × 0.3 ≃ 8.4 keV according to Eq. (5.1). Combining

this with the X-ray constraints in Fig. 4, we see that this can in fact be satisfied with the

same asymmetry as before, nνe/s >∼ 8 × 10−6.

It should be stressed, however, that the validity of Eq. (5.1) for spectra as extreme as those

in Fig. 5 remains to be cross-checked. Nevertheless, if true, we can establish the absolute lower

bound M1 ≥ 4 keV for sterile neutrinos capable of accounting for all of the dark matter in

the Universe (assuming that the only mechanism for dark matter sterile neutrino production

is active-sterile mixing).

6. Conclusions

The νMSM, i.e. Minimal Standard Model extended by three right-handed neutrinos with

masses smaller than the electroweak scale, has a number of parameters not appearing in the

Standard Model: three Majorana masses and a 3 × 3 complex matrix of Yukawa couplings.

In ref. [1], the part of the parameter space associated with the two heaviest right-handed

neutrinos was explored in detail, and a phenomenologically interesting corner was identified.

Specifically, it was found that if the mass difference of the heavy (dominantly right-handed)

neutrino mass eigenstates is much smaller than the known mass differences of the light (domi-

nantly left-handed) mass eigenstates (Scenario IIa), then it is possible to explain the known

active neutrino mass differences and mixings, and simultaneously generate and subsequently

maintain a significant lepton asymmetry in the Universe, without violating constraints related

to Big Bang Nucleosynthesis at temperatures of about 0.1 MeV.

7In this work we only consider lower bounds on the mass of the dark matter particle from structure

formation. However, the problems of missing satellites and cuspy profiles in Cold Dark Matter cosmological

models, as well as that of the galactic angular momentum, suggest that an upper bound may exist as well [55].
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The purpose of the present paper has been to constrain the parameters associated with the

lightest of the right-handed neutrinos, referred to with the subscript “1”. In this case there

are no constraints from the known active neutrino mass differences and mixings; rather, the

contribution from the lightest right-handed neutrinos to the see-saw formulae is much below

0.01 eV. (Consequently the νMSM excludes the case of degenerate active neutrinos with

a common mass scale ≫ 0.01 eV; in particular, the effective mass for neutrinoless double

beta decay cannot exceed 0.05 eV [56].) In contrast, the assertion that all of dark matter

be made of these neutrinos does allow us to place further constraints on the parameters.

More precisely, we were led in Sec. 5 to the mass range M1 ≃ 4 . . . 50 keV. The lower bound

originates from combining the theoretical analysis of the present paper with observational

X-ray (Fig. 4) and structure formation (Eq. (5.1), Fig. 6) constraints, whereas the upper

bound is dictated by the maximal lepton asymmetry allowed by Big Bang Nucleosynthesis.

The absolute values of the Yukawa couplings of the lightest right-handed neutrinos should be

in the range 5 × 10−15 . . . 4 × 10−13 in this case.

Of course, these constraints are relaxed if the sterile neutrinos only account for a fraction of

the dark matter (see, e.g., ref. [57]); if a part of them are produced by some non-equilibrium

mechanism not related to active-sterile mixing (see, e.g., refs. [37, 38, 39]); or if the thermal

history of the Universe is non-standard (see, e.g., refs. [40, 41, 42]).

It is important to stress, in addition, that the lower boundM1 >∼ 4 keV relies on a naive re-

interpretation of structure formation simulations which were carried out assuming a thermal

spectrum of dark matter particles, rather than a proper non-equilibrium shape as given in

Fig. 5. Hopefully this issue can be put on more solid ground soon.

Finally, we recall that perhaps the most realistic hope for an experimental detection of dark

matter sterile neutrinos in the parameter range that we have discussed, would be through the

discovery of a peak in the diffuse X-ray background from regions where dark matter decays.

The dominant decay channel is N1 → νγ and the spectrum should thus peak at the energy

M1/2 >∼ 2 keV. As far as laboratory searches are concerned, they are quite difficult due to

the very small Yukawa couplings of the dark matter sterile neutrinos; however, a possibility

has been suggested in ref. [58].
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Appendix A. Different characterizations of lepton asymmetry

Several different conventions are used in the literature for characterizing the presence of

a non-zero lepton asymmetry, and for completeness we specify the relations between them

here. In analogy with the characterization of the baryon asymmetry through nB/s, the

conceptually cleanest way is to give the ratio of lepton asymmetry density over the total

entropy density, because this quantity remains constant as a function of the temperature

(as long as the Universe remains in thermodynamic equilibrium). However there are many

leptonic species, so we need to specify which ones to count; in this paper we have assumed

that the asymmetries are equal in all active leptons (both left-handed and right-handed), and

choose the electron-like neutrinos (two degrees of freedom, particles and antiparticles) as a

representative. The corresponding asymmetry, “particles minus antiparticles”, normalised to

the entropy density, is then denoted by nνe/s.

Another way to express the asymmetry is to give the leptonic chemical potential, µL, that

corresponds to nνe . This is useful, since chemical potential is the quantity that appears in

quantum field theoretic computations. In the free limit,

nνe = 〈 ˆ̄νeLγ0ν̂eL〉 = 2i
∑

∫

Qf

q̃0

Q̃2 +m2

∣

∣

∣

∣

∣

∣

q̃0=ωf+iµL

=

∫

d3q

(2π)3

[

nF(E−µL)−nF(E+µL)
]

, (A.1)

where Qf are the fermionic Matsubara momenta, Qf ≡ (ωf,q) with ωf ≡ 2πT (n+ 1
2 ), n ∈ Z;

Q̃ ≡ (q̃0,q) ≡ Qf + (iµL,0); and E ≡
√

q2 +m2. In the massless limit m ≪ T , Eq. (A.1)

evaluates to

nνe =
µLT

2

6
+
µ3

L

6π2
. (A.2)

Therefore, for µL ≪ T ,
nνe

s
≈ 15

4π2heff
× µL

T
, (A.3)

where heff parametrizes the total entropy density through s ≡ 2π2T 3heff/45.

Yet another way to characterize the asymmetry is to use the “intuitive” measure of the

asymmetry that one is naturally lead to in Boltzmann-equation or density-matrix type treat-

ments, where the basic degrees of freedom are on-shell particle states:

∆ ≡ #νe − #ν̄e

#νe + #ν̄e

=
nνe

neq
, (A.4)

where neq ≡ #νe + #ν̄e ≡ 2
∫

d3q/(2π)3/(eq/T + 1) = 3ζ(3)T 3/2π2. Then we get

nνe

s
=

135ζ(3)

4π4heff
× ∆ . (A.5)

Or, one can normalize with respect to the photon density,

L ≡ nνe

nγ
, (A.6)
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where nγ ≡ 2
∫

d3q/(2π)3/(eq/T − 1) = 2ζ(3)T 3/π2, which yields

nνe

s
=

45ζ(3)

π4heff
× L . (A.7)

Numerically, choosing to cite the temperature-dependent asymmetries (µL/T,∆, L) at T =

100 GeV as e.g. in refs. [9, 51], we may approximate heff ≈ 102 for the MSM,8 whereby

nνe

s
≈ 3.7 × 10−3 × µL

T

∣

∣

∣

T = 100 GeV
(A.8)

≈ 4.1 × 10−3 × ∆|T = 100 GeV (A.9)

≈ 5.4 × 10−3 × L|T = 100 GeV . (A.10)
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