8 research outputs found

    Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells

    Get PDF
    The C-type lectin dendritic cell (DC)–specific intercellular adhesion molecule grabbing non-integrin (DC-SIGN; CD209) facilitates binding and internalization of several viruses, including HIV-1, on DCs, but the underlying mechanism for being such an efficient phagocytic pathogen-recognition receptor is poorly understood. By high resolution electron microscopy, we demonstrate a direct relation between DC-SIGN function as viral receptor and its microlocalization on the plasma membrane. During development of human monocyte-derived DCs, DC-SIGN becomes organized in well-defined microdomains, with an average diameter of 200 nm. Biochemical experiments and confocal microscopy indicate that DC-SIGN microdomains reside within lipid rafts. Finally, we show that the organization of DC-SIGN in microdomains on the plasma membrane is important for binding and internalization of virus particles, suggesting that these multimolecular assemblies of DC-SIGN act as a docking site for pathogens like HIV-1 to invade the host

    Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR spectroscopy

    No full text
    The penetration of light into optically thick samples containing the G-protein-coupled receptor rhodopsin is studied by numerical finite-element simulations and double-quantum solid-state NMR experiments. Illumination with white light leads to the generation of the active bathorhodopsin photostate in the outer layer of the sample but generates a large amount of the side product, isorhodopsin, in the sample interior. The overall yield of bathorhodopsin is improved by using monochromatic 420 nm illumination and by mixing the sample with transparent glass beads. The implications of these findings on the interpretation of previously published rhodopsin NMR data are discussed.<br/

    Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR

    Get PDF
    We have obtained carbon-carbon bond length data for the functional retinylidene chromophore of rhodopsin, with a spatial resolution of 3 pm. The very high resolution was obtained by performing double-quantum solid-state NMR on a set of noncrystalline isotopically labelled bovine rhodopsin samples. We detected localized perturbations of the carbon-carbon bond lengths of the retinylidene chromophore. The observations are consistent with a model in which the positive charge of the protonated Schiff base penetrates into the polyene chain and partially concentrates around the C13 position. This coincides with the proximity of a water molecule located between the glutamate-181 and serine-186 residues of the second extracellular loop, which is folded back into the transmembrane region. These measurements support the hypothesis that the polar residues of the second extracellular loop and the associated water molecule assist the rapid selective photoisomerization of the retinylidene chromophore by stabilizing a partial positive charge in the center of the polyene chain

    Accurate measurements of 13C-13C J-couplings in the rhodopsin chromophore by double-quantum solid-state NMR spectroscopy

    Get PDF
    A new double-quantum solid-state NMR pulse sequence is presented and used to measure one-bond 13C-13C J-couplings in a set of 13C2-labeled rhodopsin isotopomers. The measured J-couplings reveal a perturbation of the electronic structure at the terminus of the conjugated chain but show no evidence for protein-induced electronic perturbation near the C11-C12 isomerization site. This work establishes NMR methodology for measuring accurate 1JCC values in noncrystalline macromolecules and shows that the measured J-couplings may reveal local electronic perturbations of mechanistic significance

    Towards an interpretation of 13C chemical shifts in bathorhodopsin, a functional intermediate of a G-protein coupled receptor

    Get PDF
    Photoisomerization of the membrane-bound light receptor protein rhodopsin leads to an energy-rich photostate called bathorhodopsin, which may be trapped at temperatures of 120 K or lower. We recently studied bathorhodopsin by low-temperature solid-state NMR, using in situ illumination of the sample in a purpose-built NMR probe. In this way we acquired 13C chemical shifts along the retinylidene chain of the chromophore. Here we compare these results with the chemical shifts of the dark state chromophore in rhodopsin, as well as with the chemical shifts of retinylidene model compounds in solution. An earlier solid-state NMR study of bathorhodopsin found only small changes in the 13C chemical shifts upon isomerization, suggesting only minor perturbations of the electronic structure in the isomerized retinylidene chain. This is at variance with our recent measurements which show much larger perturbations of the 13C chemical shifts. Here we present a tentative interpretation of our NMR results involving an increased charge delocalization inside the polyene chain of the bathorhodopsin chromophore. Our results suggest that the bathochromic shift of bathorhodopsin is due to modified electrostatic interactions between the chromophore and the binding pocket, whereas both electrostatic interactions and torsional strain are involved in the energy storage mechanism of bathorhodopsin.<br/
    corecore