13 research outputs found

    Environment-Specific Probiotic Supernatants Modify the Metabolic Activity and Survival of Streptococcus mutans in vitro

    Get PDF
    A range of studies showed probiotics like Streptococcus oligofermentans and Limosilactobacillus reuteri to inhibit the cariogenic activity and survival of Streptococcus mutans, possibly via the production of substances like H2O2, reuterin, ammonia and organic acids. We aimed to assess the environment-specific mechanisms underlying this inhibition. We cultured L. reuteri and S. oligofermentans in various environments; minimal medium (MM), MM containing glucose (MM+Glu), glycerol (MM+Gly), lactic acid (MM+Lac), arginine (MM+Arg) and all four substances (MM+all) in vitro. Culture supernatants were obtained and metabolite concentrations (reuterin, ammonia, H2O2, lactate) measured. S. mutans was similarly cultivated in the above six different MM variation media, with glucose being additionally added to the MM+Gly, MM+Lac, and MM+Arg group, with (test groups) and without (control groups) the addition of the supernatants of the described probiotic cultures. Lactate production by S. mutans was measured and its survival (as colony-forming-units/mL) assessed. L. reuteri environment-specifically produced reuterin, H2O2, ammonia and lactate, as did S. oligofermentans. When cultured in S. oligofermentans supernatants, lactate production by S. mutans was significantly reduced (p < 0.01), especially in MM+Lac+Glu and MM+all, with no detectable lactate production at all (controls means ± SD: 4.46 ± 0.41 mM and 6.00 ± 0.29 mM, respectively, p < 0.001). A similar reduction in lactate production was found when S. mutans was cultured in L. reuteri supernatants (p < 0.05) for all groups except MM+Lac+Glu. Survival of S. mutans cultured in S. oligofermentans supernatants in MM+Lac+Glu and MM+all was significantly reduced by 0.6-log10 and 0.5-log10, respectively. Treatment with the supernatant of L. reuteri resulted in a reduction in the viability of S. mutans in MM+Gly+Glu and MM+all by 6.1-log10 and 7.1-log10, respectively. Probiotic effects on the metabolic activity and survival of S. mutans were environment-specific through different pathways

    Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour. In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs). We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1. Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.Peer Reviewe

    Effect of reduced nutritional supply on the metabolic activity and survival of cariogenic bacteria in vitro

    No full text
    Sealed cariogenic bacteria are deprived from dietary carbohydrate, but could be provided with nutrients by pulpal fluids, with adaptive strain-specific activities being possible. We investigated survival and metabolic activity of the cariogenic bacteria Streptococcus sobrinus, Actinomyces naeslundii and Lactobacillus rhamnosus in different carbohydrate-limited media without carbon source (CLM), or containing glucose (CLM-G), albumin (CLM-A), or α1-acid glycoprotein (CLM-AGP) in vitro. Bacterial metabolite concentrations (lactate, pyruvate, oxaloacetate, citrate, acetate, formate, ethanol, acetoin) after 20 and 4 hours incubation, and bacterial numbers (CFU) after 24 hours incubation were analyzed using multivariate-analysis-of-variance (MANOVA). The medium (p = 0.02/MANOVA), strain and incubation-time (both p < 0.001) had significant impact on metabolite concentrations. Bacteria secreted mainly lactate (80.3 µg/106 bacteria S. sobrinus) and acetate (54.5 µg/106 bacteria A. naeslundii). Nearly all metabolites were produced in higher concentrations in S. sobrinus than in A. naeslundii or L. rhamnosus (p < 0.05/HSD). Metabolite concentration was significantly higher in CLM-G than in other media for most metabolites (p < 0.05). L. rhamnosus showed significantly lower survival than S. sobrinus and A. naeslundii (p < 0.05/HSD) regardless of the media, while S. sobrinus and A. naeslundii showed medium-specific survival. Survival of carbon starvation was strain- and medium-specific. Sustained organic acid production was found for all strains and media

    A network model of the egg supply chain in Germany implemented as a FSKX compliant object

    No full text
    In our days, food supply chains are becoming more and more complex, generating global networks involving production, processing, distribution and sale of food products. To follow the "farm to fork" paradigm when assessing risks from various hazards linked to food products, supply chain network models are useful and versatile tools.The objective of the present "egg supply chain network model" is to allow users to predict and visualise the spatial commodity flow within the German egg supply chain. The network model provides for the user the option to select values for the input parameter "actor" in order to allow simulation of estimates for different supply chain scenarios. It generates a data frame as output regarding the estimates of food flows for the product "chicken eggs" in Germany on NUTS-3 level according to the selected parameter and a chloropleth map for illustrating the distribution of product quantities.The network model and all required resources are provided as a fully annotated file compliant to the community standard Food Safety Knowledge Exchange (FSKX) and can be executed online or with the desktop FSK-Lab software

    Nauta consumer phase model for transfer of Campylobacter during preparation of ready-to-eat chicken salad

    No full text
    &lt;p&gt;The model describes a consumer phase model (CPM), which predicts the effects of food preparation by the consumer on the survival and transfer of Campylobacter. The input of the model is the distribution of Campylobacter cells on chicken breast fillets purchased at retail. The model uses data from an observational studies of consumers preparing a chicken meat salad, using chicken breast fillets artificially contaminated with a surrogate microorganism. The doses and the mean of doses and the prevalence of exposure to Campylobacter cells are estimated.&lt;/p&gt;&nbsp; &lt;p&gt;The objective of the model is to estimate the ingested doses after consumption of a ready to eat chicken salad.&lt;/p&gt;&nbsp;&lt;p&gt;&lt;a href="https://knime.bfr.berlin/knime/webportal/space/RAKIP-Web/Zenodo_Service/DownloadFromZenodo?exec&amp;pm:doi=.10410200"&gt;Online Model Execution&lt;/a&gt;&lt;/p&gt;&nbsp;DK; FSKX; [email protected]

    Long-term in vitro

    No full text

    Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence.

    No full text
    Oropharyngeal avian trichomonosis is mainly caused by Trichomonas gallinae, a protozoan parasite that affects the upper digestive tract of birds. Lesions of the disease are characterized by severe inflammation which may result in fatality by starvation. Two genotypes of T. gallinae were found to be widely distributed in different bird species all over the world. Differences in the host distribution and association with lesions of both genotypes have been reported. However, so far no distinct virulence factors of this parasite have been described and studies might suffer from possible co-infections of different genotypes. Therefore, in this paper, we analyzed the virulence capacity of seven clones of the parasite, established by micromanipulation, representing the two most frequent genotypes. Clones of both genotypes caused the maximum score of virulence at day 3 post-inoculation in LMH cells, although significant higher cytopathogenic score was found in ITS-OBT-Tg-1 genotype clones at days 1 and 2, as compared to clones with ITS-OBT-Tg-2. By using one representative clone of each genotype, a comparative proteomic analysis of the membrane proteins enriched fraction has been carried out by a label free approach (Data available via ProteomeXchange: PXD013115). The analysis resulted in 302 proteins of varying abundance. In the clone with the highest initial virulence, proteins related to cell adhesion, such as an immuno-dominant variable surface antigen, a GP63-like protein, an armadillo/beta-catenin-like repeat protein were found more abundant. Additionally, Ras superfamily proteins and calmodulins were more abundant, which might be related to an increased activity in the cytoskeleton re-organization. On the contrary, in the clone with the lowest initial virulence, larger numbers of the identified proteins were related to the carbohydrate metabolism. The results of the present work deliver substantial differences between both clones that could be related to feeding processes and morphological changes, similarly to the closely related pathogen Trichomonas vaginalis
    corecore