2,108 research outputs found

    Spatial stream modeling of Louisiana Waterthrush (\u3ci\u3eParkesia motacilla\u3c/i\u3e) foraging substrate and aquatic prey in a watershed undergoing shale gas development

    Get PDF
    We demonstrate the use of spatial stream network models (SSNMs) to explore relationships between a semiaquatic bioindicator songbird, Louisiana Waterthrush (Parkesia motacilla), and stream monitoring and benthic macroinvertebrate data in an area undergoing shale gas development. SSNMs allowed us to account for spatial autocorrelation inherent to these environmental data types and stream properties that traditional modeling approaches cannot capture to elucidate factors that affect waterthrush foraging locations. We monitored waterthrush along 58.1 km of 1st- and 2nd-order headwater stream tributaries (n = 14) in northwestern West Virginia over a two year period (2013–2014), sampled benthic macroinvertebrates in waterthrush territories, and collected wetted perimeter stream channel and water chemistry data along a 50 m fixed point stream grid. Spatial models outperformed traditional regression models and made a statistical difference in whether stream covariates of interest were considered relatable to waterthrush foraging. Waterthrush foraging probability index (FPI) was greater in areas where family and genus-level multi-metric indices of biotic stream integrity were higher (i.e. WVSCI and GLIMPSS). Waterthrush were found foraging both among stream flow connected and unconnected sampled sites on relatively further upstream locations where WVSCI and GLIMPSS were predicted to be highest. While there was no significant relationship found between FPI and shale gas land use on a catchment area scale, further information on waterthrush trophic dynamics and bioaccumulation of surface contaminants is needed before establishing the extent to which waterthrush foraging may be affected by shale gas development

    Demographic characteristics of an avian predator, Louisiana Waterthrush (Parkesia motacilla), in response to its aquatic prey in a Central Appalachian USA watershed impacted by shale gas development

    Get PDF
    We related Louisiana Waterthrush (Parkesia motacilla) demographic response and nest sur- vival to benthic macroinvertebrate aquatic prey and to shale gas development parameters using models that accounted for both spatial and non-spatial sources of variability in a Central Appala- chian USA watershed. In 2013, aquatic prey density and pollution intolerant genera (i.e., pollu- tion tolerance value \u3c4) decreased statistically with increased waterthrush territory length but not in 2014 when territory densities were lower. In general, most demographic responses to aquatic prey were variable and negatively related to aquatic prey in 2013 but positively related in 2014. Competing aquatic prey covariate models to explain nest survival were not statistically significant but differed annually and in general reversed from negative to positive influence on daily survival rate. Potential hydraulic fracturing runoff decreased nest survival both years and was statistically significant in 2014. The EPA Rapid Bioassessment protocol (EPA) and Habitat Suitability Index (HSI) designed for assessing suitability requirements for waterthrush were posi- tively linked to aquatic prey where higher scores increased aquatic prey metrics, but EPA was more strongly linked than HSI and varied annually. While potential hydraulic fracturing runoff in 2013 may have increased Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness, in 2014 shale gas territory disturbance decreased EPT richness. In 2014, intolerant genera decreased at the territory and nest level with increased shale gas disturbance suggesting the potential for localized negative effects on waterthrush. Loss of food resources does not seem directly or solely responsible for demographic declines where waterthrush likely were able to meet their foraging needs. However collective evidence suggests there may be a shale gas dis- turbance threshold at which waterthrush respond negatively to aquatic prey community changes. Density-dependent regulation of their ability to adapt to environmental change through acquisition of additional resources may also alter demographic response

    The Cowl - v. 74 - n. 19 - Mar 25, 2010

    Get PDF
    The Cowl - student newspaper of Providence College. Volume 74 - Number 19 - March 25, 2010. 32 pages

    Spatial variation in breeding habitat selection by Cerulean Warblers (Setophaga cerulea) throughout the appalachian mountains

    Get PDF
    Studies of habitat selection are often of limited utility because they focus on small geographic areas, fail to examine behavior at multiple scales, or lack an assessment of the fitness consequences of habitat decisions. These limitations can hamper the identification of successful site-specific management strategies, which are urgently needed for severely declining species like Cerulean Warblers (Setophaga cerulea). We assessed how breeding habitat decisions made by Cerulean Warblers at multiple scales, and the subsequent effects of these decisions on nest survival, varied across the Appalachian Mountains. Selection for structural habitat features varied substantially among areas, particularly at the territory scale. Males within the least-forested landscapes selected microhabitat features that reflected more closed-canopy forest conditions, whereas males in highly forested landscapes favored features associated with canopy disturbance. Selection of nest-patch and nest-site attributes by females was more consistent across areas, with females selecting for increased tree size and understory cover and decreased basal area and midstory cover. Floristic preferences were similar across study areas: White Oak (Quercus alba), Cucumber-tree (Magnolia acuminata), and Sugar Maple (Acer saccharum) were preferred as nest trees, whereas red oak species (subgenus Erythrobalanus) and Red Maple (A. rubrum) were avoided. The habitat features that were related to nest survival also varied among study areas, and preferred features were negatively associated with nest survival at one area. Thus, our results indicate that large-scale spatial heterogeneity may influence local habitat-selection behavior and that it may be necessary to articulate site-specific management strategies for Cerulean Warblers

    An evaluation and comparison of conservation guidelines for an at-risk migratory songbird

    Get PDF
    For at-risk wildlife species, it is important to consider conservation within the process of adaptive management. Golden-winged Warblers (Vermivora chrysoptera) are Neotropical migratory songbirds that are experiencing long-term population declines due in part to the loss of early-successional nesting habitat. Recently-developed Golden-winged Warbler habitat management guidelines are being implemented by USDA: Natural Resource Conservation Service (2014) and its partners through the Working Lands For Wildlife (WLFW) program. During 2012–2014, we studied the nesting ecology of Golden-winged Warblers in managed habitats of the eastern US that conformed to WLFW conservation practices. We evaluated five NRCS “management scenarios” with respect to nesting success and attainment of recommended nest site vegetation conditions outlined in the Golden-winged Warbler breeding habitat guidelines. Using estimates of territory density, pairing rate, nest survival, and clutch size, we also estimated fledglingproductivity (number of fledglings/ha) for each management scenario. In general, Golden-winged Warbler nest survival declined as each breeding season advanced, but nest survival was similar across management scenarios. Within each management scenario, vegetation variables had little influence on nest survival. Still, percent Rubus cover and density of \u3e2 m tall shrubs were relevant in some management scenarios. All five management scenarios rarely attained recommended levels of nest site vegetation conditions for Golden-winged, yet nest survival was high. Fledgling productivity estimates for each management scenario ranged from 2.1 to 8.6 fledglings/10 hectares. Our results indicate that targeted habitat management for Golden-winged Warblers using a variety of management techniques on private lands has the capability to yield high nest survival and fledgling productivity, and thus have the potential to contribute to the species recovery

    Variables associated with nest survival of Golden-winged Warblers (Vermivora chrysoptera) among vegetation communities commonly used for nesting

    Get PDF
    Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers

    Breeding season concerns and response to forest management: can forest management produce more breeding birds?.

    Get PDF
    Cerulean Warblers (Setophaga cerulea), one of the fastest declining avian species in North America, are associated with heterogeneous canopies in mature hardwood forests. However, the age of most second and third-growth forests in eastern North American is not sufficient for natural tree mortality to maintain structurally diverse canopies. Previous research suggests that forest management through timber harvest also may create conditions suitable as Cerulean Warbler breeding habitat. We conducted a multistate study that examined Cerulean Warbler response to varying degrees of canopy disturbance created by operational timber harvest. Specifically, 3 harvest treatments and an un-harvested reference plot were replicated on 7 study areas in 4 Appalachian states in 2005-2010. We compared pre-harvest and four years post-harvest demographic response of Cerulean Warblers. Over all study areas, Cerulean Warbler territory density remained stable in un-harvested reference plots and increased significantly the first year post-harvest on intermediate harvest plots. By year 3 post-harvest, territory density remained significantly greater for intermediate harvest than reference plots, and marginally greater for light and heavy harvests than reference plots. However, un-harvested reference plots had greater nest survival than most harvest treatments. The one exception was nest survival between reference plots and the intermediate harvest on the northern study areas did not differ. Our results indicate that intermediate harvests likely benefit Cerulean Warblers in some portions of the species’ breeding range. However, additional research is needed to better examine fitness consequences of timber harvests and to estimate population-level implications. In particular, does the greater number of nesting individuals, particularly in intermediate harvests, compensate for lower nesting success? Until researchers provide such insight, we recommend management decisions be based on local conditions, particularly in forests where Cerulean Warbler populations are high

    Emulating Natural Disturbances for Declining Late- Successional Species: A Case Study of the Consequences for Cerulean Warblers (Setophaga cerulea)

    Get PDF
    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity

    Exome Sequencing Reveals Comprehensive Genomic Alterations across Eight Cancer Cell Lines

    Get PDF
    It is well established that genomic alterations play an essential role in oncogenesis, disease progression, and response of tumors to therapeutic intervention. The advances of next-generation sequencing technologies (NGS) provide unprecedented capabilities to scan genomes for changes such as mutations, deletions, and alterations of chromosomal copy number. However, the cost of full-genome sequencing still prevents the routine application of NGS in many areas. Capturing and sequencing the coding exons of genes (the “exome”) can be a cost-effective approach for identifying changes that result in alteration of protein sequences. We applied an exome-sequencing technology (Roche Nimblegen capture paired with 454 sequencing) to identify sequence variation and mutations in eight commonly used cancer cell lines from a variety of tissue origins (A2780, A549, Colo205, GTL16, NCI-H661, MDA-MB468, PC3, and RD). We showed that this technology can accurately identify sequence variation, providing ∼95% concordance with Affymetrix SNP Array 6.0 performed on the same cell lines. Furthermore, we detected 19 of the 21 mutations reported in Sanger COSMIC database for these cell lines. We identified an average of 2,779 potential novel sequence variations/mutations per cell line, of which 1,904 were non-synonymous. Many non-synonymous changes were identified in kinases and known cancer-related genes. In addition we confirmed that the read-depth of exome sequence data can be used to estimate high-level gene amplifications and identify homologous deletions. In summary, we demonstrate that exome sequencing can be a reliable and cost-effective way for identifying alterations in cancer genomes, and we have generated a comprehensive catalogue of genomic alterations in coding regions of eight cancer cell lines. These findings could provide important insights into cancer pathways and mechanisms of resistance to anti-cancer therapies

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program—H2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes
    corecore