40 research outputs found

    Fungal CSL transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins.</p> <p>Results</p> <p>We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied.</p> <p>Conclusion</p> <p>Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans.</p

    Secondary structure is required for 3′ splice site recognition in yeast

    Get PDF
    Higher order RNA structures can mask splicing signals, loop out exons, or constitute riboswitches all of which contributes to the complexity of splicing regulation. We identified a G to A substitution between branch point (BP) and 3′ splice site (3′ss) of Saccharomyces cerevisiae COF1 intron, which dramatically impaired its splicing. RNA structure prediction and in-line probing showed that this mutation disrupted a stem in the BP-3′ss region. Analyses of various COF1 intron modifications revealed that the secondary structure brought about the reduction of BP to 3′ss distance and masked potential 3′ss. We demonstrated the same structural requisite for the splicing of UBC13 intron. Moreover, RNAfold predicted stable structures for almost all distant BP introns in S. cerevisiae and for selected examples in several other Saccharomycotina species. The employment of intramolecular structure to localize 3′ss for the second splicing step suggests the existence of pre-mRNA structure-based mechanism of 3′ss recognition

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

    No full text
    Pre-mRNA splicing represents an important regulatory layer of eukaryotic gene expression. In the simple budding yeast Saccharomyces cerevisiae, about one-third of all mRNA molecules undergo splicing, and splicing efficiency is tightly regulated, for example, during meiotic differentiation. S. cerevisiae features a streamlined, evolutionarily highly conserved splicing machinery and serves as a favourite model for studies of various aspects of splicing. RNA-seq represents a robust, versatile, and affordable technique for transcriptome interrogation, which can also be used to study splicing efficiency. However, convenient bioinformatics tools for the analysis of splicing efficiency from yeast RNA-seq data are lacking. We present a complete workflow for the calculation of genome-wide splicing efficiency in S. cerevisiae using strand-specific RNA-seq data. Our pipeline takes sequencing reads in the FASTQ format and provides splicing efficiency values for the 5′ and 3′ splice junctions of each intron. The pipeline is based on up-to-date open-source software tools and requires very limited input from the user. We provide all relevant scripts in a ready-to-use form. We demonstrate the functionality of the workflow using RNA-seq datasets from three spliceosome mutants. The workflow should prove useful for studies of yeast splicing mutants or of regulated splicing, for example, under specific growth conditions

    Fission yeast CSL proteins function as transcription factors.

    Get PDF
    BACKGROUND: Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family

    Cbf11 binds to and activates a reporter gene <i>in vivo</i>.

    No full text
    <p>(<b>A</b>) Schematic representation of expression reporter plasmids with the β-galactosidase gene under the control of a minimal promoter with three copies of either the canonical ('RBP') or mutated ('DEL2') CSL response element (not to scale). (<b>B</b>) β-galactosidase activity in wild-type and CSL deletion mutant strains harbouring the RBP reporter plasmid. Activation of the reporter is dependent on endogenous Cbf11 but not Cbf12. (<b>C</b>) β-galactosidase activity in the <i>Δcbf11 Δcbf12</i> strain harbouring the RBP reporter plasmid and overexpressing the indicated CSL protein variants (HA-tagged) from a plasmid. The presence of high levels of both Cbf11 and Cbf12 activates, to a different degree, the RBP reporter. This activation is abolished in both CSL proteins by the 'DBM' point mutation in the BTD domain. (<b>D</b>) β-galactosidase activity in strains with chromosomally TAP-tagged Cbf11 or Cbf12 harbouring either the RBP or mutated DEL2 reporter plasmid. Both strains show RBP reporter activation similar to the untagged wild-type strain in (B) and no activation of the DEL2 reporter with mutated CSL binding sites. (<b>E, F</b>) Western blots of cell extracts from strains used in (C) and (D), respectively, confirming that all N-terminally HA-tagged and C-terminally TAP-tagged CSL variants were expressed properly. (<b>G</b>) Chromatin immunoprecipitation of TAP-tagged Cbf11 and Cbf12 from strains described in (D). Cbf11 binds strongly the promoter region of the RBP reporter but not the mutated DEL2 reporter. No binding to either reporter could be detected for Cbf12. All data represent mean values±standard deviations from at least three independent experiments.</p
    corecore