4,028 research outputs found

    Stellar and circumstellar properties of visual binaries in the Orion Nebula Cluster

    Full text link
    Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constraints from young binaries in those environments are fundamental for understanding both the formation of multiple systems and planets in multiple systems throughout the Galaxy. We build upon the largest survey for young binaries in the Orion Nebula Cluster (ONC) which is based on Hubble Space Telescope observations to derive both stellar and circumstellar properties of newborn binary systems in this cluster environment. We present Adaptive Optics spatially-resolved JHKL'-band photometry and K-band R\sim\,5000 spectra for a sample of 8 ONC binary systems from this database. We characterize the stellar properties of binary components and obtain a census of protoplanetary disks through K-L' color excess. For a combined sample of ONC binaries including 7 additional systems with NIR spectroscopy from the literature, we derive mass ratio and relative age distributions. We compare the stellar and circumstellar properties of binaries in ONC with those in Tau-Aur and Oph from samples of binaries with stellar properties derived for each component from spectra and/or visual photometry and with a disk census obtained through K-L color excess. The mass ratio distribution of ONC binaries is found to be indistinguishable from that of Tau-Aur and, to some extent, to that of Oph in the separation range 85-560\,AU and for primary mass in the range 0.15 to 0.8\,M_{\sun}.A trend toward a lower mass ratio with larger separation is suggested in ONC binaries which is not seen in Tau-Aur binaries.The components of ONC binaries are found to be significantly more coeval than the overall ONC population and as coeval as components of binaries in Tau-Aur and Oph[...]Comment: Accepted for publication in Astronomy & Astrophysic

    Real space finite difference method for conductance calculations

    Get PDF
    We present a general method for calculating coherent electronic transport in quantum wires and tunnel junctions. It is based upon a real space high order finite difference representation of the single particle Hamiltonian and wave functions. Landauer's formula is used to express the conductance as a scattering problem. Dividing space into a scattering region and left and right ideal electrode regions, this problem is solved by wave function matching (WFM) in the boundary zones connecting these regions. The method is tested on a model tunnel junction and applied to sodium atomic wires. In particular, we show that using a high order finite difference approximation of the kinetic energy operator leads to a high accuracy at moderate computational costs.Comment: 13 pages, 10 figure

    Scattering in the PT-symmetric Coulomb potential

    Full text link
    Scattering on the PT{\cal PT}-symmetric Coulomb potential is studied along a U-shaped trajectory circumventing the origin in the complex xx plane from below. This trajectory reflects PT{\cal PT} symmetry, sets the appropriate boundary conditions for bound states and also allows the restoration of the correct sign of the energy eigenvalues. Scattering states are composed from the two linearly independent solutions valid for non-integer values of the 2L parameter, which would correspond to the angular momentum in the usual Hermitian setting. Transmission and reflection coefficients are written in closed analytic form and it is shown that similarly to other PT{\cal PT}-symmetric scattering systems the latter exhibit handedness effect. Bound-state energies are recovered from the poles of the transmission coefficients.Comment: Journal of Physics A: Mathematical and Theoretical 42 (2009) to appea

    Weeping Lovegrass.

    Get PDF
    8 p

    Gauge-invariant Hamiltonian dynamics of cylindrical gravitational waves

    Full text link
    The model of cylindrical gravitational waves is employed to work out and check a recent proposal in Ref. [11] how a diffeomorphism-invariant Hamiltonian dynamics is to be constructed. The starting point is the action by Ashtekar and Pierri because it contains the boundary term that makes it differentiable for non-trivial variations at infinity. With the help of parametrization at infinity, the notion of gauge transformation is clearly separated from that of asymptotic symmetry. The symplectic geometry of asymptotic symmetries and asymptotic time is described and the role of the asymptotic structures in defining a zero-motion frame for the Hamiltonian dynamics of Dirac observables is explained. Complete sets of Dirac observables associated with the asymptotic fields are found and the action of the asymptotic symmetries on them is calculated. The construction of the corresponding quantum theory is sketched: the Fock space, operators of asymptotic fields, the Hamiltonian and the scattering matrix are determined.Comment: 16 pages, 1 figur

    The emergence of Special and Doubly Special Relativity

    Full text link
    Building on our previous work [Phys.Rev.D82,085016(2010)], we show in this paper how a Brownian motion on a short scale can originate a relativistic motion on scales that are larger than particle's Compton wavelength. This can be described in terms of polycrystalline vacuum. Viewed in this way, special relativity is not a primitive concept, but rather it statistically emerges when a coarse graining average over distances of order, or longer than the Compton wavelength is taken. By analyzing the robustness of such a special relativity under small variations in the polycrystalline grain-size distribution we naturally arrive at the notion of doubly-special relativistic dynamics. In this way, a previously unsuspected, common statistical origin of the two frameworks is brought to light. Salient issues such as the role of gauge fixing in emergent relativity, generalized commutation relations, Hausdorff dimensions of representative path-integral trajectories and a connection with Feynman chessboard model are also discussed.Comment: 21 pages, 1 figure, RevTeX4, substantially revised version, accepted in Phys. Rev.

    Modeling of light scattering and haze in semicrystalline polymers

    Get PDF
    This article reports a new model approach for the description of light scattering in semicrystalline polymers, to describe more precisely the influence of supermolecular structure on the optical properties. This is the first study in which light scattering of polymer films has been modeled using exact Mie scattering theory of radially anisotropic spheres. As a model material a well‐known polymer, isotactic polypropylene (iPP) was used. Samples were prepared with different sample thicknesses and crystalline structures in order to identify the key parameters of light scattering in polycrystalline polymeric systems. Validation haze measurements were carried out with a spectrophotometer equipped with a 150 mm snap‐in integrating sphere. It was found that the optical properties of the polycrystalline sample can be described using multiple light scattering on these scattering centers. Good agreement was found between the simulated and experimentally measured haze values which proves the reliability and applicability of our new approach

    Electric Polarization of Heteropolar Nanotubes as a Geometric Phase

    Full text link
    The three-fold symmetry of planar boron nitride, the III-V analog to graphene, prohibits an electric polarization in its ground state, but this symmetry is broken when the sheet is wrapped to form a BN nanotube. We show that this leads to an electric polarization along the nanotube axis which is controlled by the quantum mechanical boundary conditions on its electronic states around the tube circumference. Thus the macroscopic dipole moment has an {\it intrinsically nonlocal quantum} mechanical origin from the wrapped dimension. We formulate this novel phenomenon using the Berry's phase approach and discuss its experimental consequences.Comment: 4 pages with 3 eps figures, updated with correction to Eqn (9

    Coherent Control of Photocurrents in Graphene and Carbon Nanotubes

    Full text link
    Coherent one photon (2ω2 \omega) and two photon (ω \omega) electronic excitations are studied for graphene sheets and for carbon nanotubes using a long wavelength theory for the low energy electronic states. For graphene sheets we find that coherent superposition of these excitations produces a polar asymmetry in the momentum space distribution of the excited carriers with an angular dependence which depends on the relative polarization and phases of the incident fields. For semiconducting nanotubes we find a similar effect which depends on the square of the semiconducting gap, and we calculate its frequency dependence. We find that the third order nonlinearity which controls the direction of the photocurrent is robust for semiconducting t ubes and vanishes in the continuum theory for conducting tubes. We calculate corrections to these results arising from higher order crystal field effects on the band structure and briefly discuss some applications of the theory.Comment: 12 pages in RevTex, 6 epsf figure

    Quantum kinetic theory of shift current electron pumping in semiconductors

    Full text link
    We develop a theory of laser beam generation of shift currents in non-centrosymmetric semiconductors. The currents originate when the excited electrons transfer between different bands or scatter inside these bands, and asymmetrically shift their centers of mass in elementary cells. Quantum kinetic equations for hot-carrier distributions and expressions for the induced currents are derived by nonequilibrium Green functions. In applications, we simplify the approach to the Boltzmann limit and use it to model laser-excited GaAs in the presence of LO phonon scattering. The shift currents are calculated in a steady-state regime.Comment: 23 pages, 5 figures (Latex
    corecore