13 research outputs found

    Inverse cascade of hybrid helicity in BΩ-MHD turbulence

    No full text
    International audienceWe investigate the impact of a solid-body rotation Ω0 on the large-scale dynamics of an incompressible magnetohydrodynamic turbulent flow in presence of a background magnetic field B0 and at low Rossby number. Three-dimensional direct numerical simulations are performed in a periodic box, at unit magnetic Prandtl number and with a forcing at intermediate wave number kf=20. When Ω0 is aligned with B0 (i.e., θ≡(Ω0,B0)=0), inverse transfer is found for the magnetic spectrum at k0 and becomes weak when θ≥35∘. These properties are understood as the consequence of an inverse cascade of hybrid helicity which is an inviscid/ideal invariant of this system when θ=0. Hybrid helicity emerges, therefore, as a key element for understanding rotating dynamos. Implication of these findings on the origin of the alignment of the magnetic dipole with the rotation axis in planets and stars is discussed

    Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains

    No full text
    We report the synthesis of methionine-containing recombinant elastin-like polypeptides (ELPs) of different lengths that contain periodically spaced methionine residues. These ELPs were chemoselectively alkylated at all methionine residues to give polycationic derivatives. Some of these samples were found to possess solubility transitions in water, where the temperature of these transitions varied with ELP concentration, nature of the methionine alkylating group, and nature of the sulfonium counterions. These studies show that introduction and controlled spacing of methionine sulfonium residues into ELPs can be used as a means both to tune their solubility transition temperatures in water using a variety of different parameters and to introduce new side-chain functionality

    LIMA: Library for IMage Acquisition a Worldwide Project for 2D Detector Control

    No full text
    International audienceThe LIMA project started in 2009. The goal was to provide a software library for the unified control of 2D detectors. LIMA is a collaborative project involving synchrotrons, research facilities and industrial companies. LIMA supports most detectors used for X-ray detection or other scientific applications. Live display is supported via a video interface and most of the native video camera image formats are supported. LIMA provides a plug-in architecture for on-line processing which allows image pre-treatment before saving e.g. noise reduction algorithm or automatic X-ray beam attenuation during continuous scans. The library supports many file format including EDF, CBF, FITS, HDF5 and TIFF. To cope with increasing detector acquisition speed, the latest LIMA release includes multi-threaded, parallelized image saving with data compression (gzip or lz4). For even higher throughput a new design, based on a distributed multi-computer architecture, of the LIMA framework is envisaged. The paper will describe the LIMA roadmap for the coming years

    Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation

    No full text
    We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media

    BLISS - Experiments Control for ESRF EBS Beamlines

    No full text
    International audienceBLISS is the new ESRF control system for running experiments, with full deployment aimed for the end of the EBS upgrade program in 2020. BLISS provides a global approach to run synchrotron experiments, thanks to hardware integration, Python sequences and an advanced scanning engine. As a Python package, BLISS can be easily embedded into any Python application and data management features enable online data analysis. In addition, BLISS ships with tools to enhance scientists user experience and can easily be integrated into TANGO based environments, with generic TANGO servers on top of BLISS controllers. BLISS configuration facility can be used as an alternative TANGO database. Delineating all aspects of the BLISS project from beamline device configuration up to the integrated user interface, this talk will present the technical choices that drove BLISS design and will describe the BLISS software architecture and technology stack in depth

    BLISS - Experiments Control for ESRF Beamline

    No full text
    International audienceBLISS is the new ESRF control system for running experiments, with full deployment aimed for the end of the EBS upgrade program in 2020. BLISS provides a global approach to run synchrotron experiments, thanks to hardware integration, Python sequences and an advanced scanning engine. As a Python package, BLISS can be easily embedded into any Python application and data management features enable online data analysis. In addition, BLISS ships with tools to enhance scientists user experience and can easily be integrated into TANGO based environments, with generic TANGO servers on top of BLISS controllers. BLISS configuration facility can be used as an alternative TANGO database. Delineating all aspects of the BLISS project from beamline device configuration up to the integrated user interface, this poster will present the technical choices that drove BLISS design and will describe the BLISS software architecture and technology stack in depth

    ID22 – the high-resolution powder-diffraction beamline at ESRF

    No full text
    Following Phase 2 of the upgrade of the ESRF in which the storage ring was replaced by a new low-emittance ring along with many other facility upgrades, the status of ID22, the high-resolution powder-diffraction beamline, is described. The beamline has an in-vacuum undulator as source providing X-rays in the range 6–75 keV. ID22's principle characteristics include very high angular resolution as a result of the highly collimated and monochromatic beam, coupled with a 13-channel Si 111 multi-analyser stage between the sample and a Dectris Eiger2 X 2M-W CdTe pixel detector. The detector's axial resolution allows recorded 2θ values to be automatically corrected for the effects of axial divergence, resulting in narrower and more-symmetric peaks compared with the previous fixed-axial-slit arrangement. The axial acceptance can also be increased with increasing diffraction angle, thus simultaneously improving the statistical quality of high-angle data. A complementary Perkin Elmer XRD1611 medical-imaging detector is available for faster, lower-resolution data, often used at photon energies of 60–70 keV for pair-distribution function analysis, although this is also possible in high-resolution mode by scanning up to 120° 2θ at 35 keV. There are various sample environments, allowing sample temperatures from 4 K to 1600°C, a capillary cell for non-corrosive gas atmospheres in the range 0–100 bar, and a sample-changing robot that can accommodate 75 capillary samples compatible with the temperature range 80 K to 950°C
    corecore