20 research outputs found

    Monoclonal antibody 1.6.1 against human MPL receptor allows HSC enrichment of CB and BM CD34(+)CD38(-) populations

    No full text
    International audienceThrombopoietin (TPO) and its receptor Mpl (CD110) play a crucial role in the regulation of hematopoietic stem cells (HSCs). Functional study of Mpl-expressing HSCs has, however, been hampered by the lack of efficient monoclonal antibodies, explaining the very few data available on Mpl(+) HSCs during human embryonic development and after birth. Investigating the main monoclonal antibodies used so far to sort CD110(+) cells from cord blood (CB) and adult bone marrow (BM), we found that only the recent monoclonal antibody 1.6.1 engineered by Immunex Corporation was specific. Using in vitro functional assays, we found that this antibody can be used to sort a CD34(+)CD38(-)CD110(+) population enriched in hematopoietic progenitor stem cells, both in CB and in adult BM. In vivo injection into NSG mice further indicated that the CB CD34(+)CD38(-)CD110(+) population is highly enriched in HSCs compared with both CD34(+)CD38(-)CD110(-) and CD34(+)CD38(-) populations. Together our results validate MAb1.6.1 as an important tool, which has so far been lacking, in the HSC field

    Thrombopoietin increases dna repair and limits hematopoietic stem cell long-term injury and mutagenesis in response to dna damage

    No full text
    ISEH 41st Annual Scientific Meeting of the Society-for-Hematology-and-Stem-Cells, Amsterdam, NETHERLANDS, AUG 23-26, 2012International audienceno abstrac

    Endoglin expression level discriminates long-term hematopoietic from short-term clonogenic progenitor cells in the aorta

    No full text
    International audienceCD105 is an auxiliary receptor for the transforming growth factor beta superfamily, highly expressed on proliferating endothelial cells and adult hematopoietic stem cells. Because CD105 mRNA expression was reported in the developing aortic region, we further characterized its expression profile in the aorta and examined the hematopoietic potential of CD105(+) cells. Aortic endothelial cells, intra-aortic hematopoietic cell clusters and the purified cell fraction enriched in progenitor/hematopoietic stem cell activity expressed CD105. Aortic hematopoietic short-term clonogenic progenitors were highly enriched in the CD105(intermediate) population whereas more immature long-term progenitors/hematopoietic stem cells are contained within the CD105(high) population. This places CD105 on the short list of molecules discriminating short-term versus long-term progenitors in the aorta. Furthermore, decreasing transforming growth factor beta signaling increases the number of clonogenic progenitors. This suggests that CD105 expression level defines a hierarchy among aortic hematopoietic cells allowing purification of clonogenic versus more immature hematopoietic progenitors, and that the transforming growth factor beta pathway plays a critical role in this process

    Thrombopoietin-Increased DNA-PK-Dependent DNA Repair Limits Hematopoietic STEM and Progenitor CELL Mutagenesis in Response to Irradiation

    No full text
    54th Annual Meeting and Exposition of the American-Society-of-Hematology (ASH), Atlanta, GA, DEC 08-11, 2012International audienceno abstrac

    Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation

    No full text
    Upon in vitro induction or in vivo implantation, the stem cells of the dental pulp display hallmarks of odontoblastic, osteogenic, adipogenic or neuronal cells. However, whether these phenotypes result from genuine multipotent cells or from coexistence of distinct progenitors is still an open question. Furthermore, determining whether a single cell-derived progenitor is capable of undergoing a differentiation cascade leading to tissue repair in situ is important for the development of cell therapy strategies. Three clonal pulp precursor cell lines (A4, C5, H8), established from embryonic ED18 first molars of mouse transgenic for a recombinant plasmid adeno-SV40, were induced to differentiate towards the odonto/osteogenic, chondrogenic or adipogenic programme. Expression of phenotypic markers of each lineage was evaluated by RT-PCR, histochemistry or immunocytochemistry. The clones were implanted into mandibular incisors or calvaria of adult mice. The A4 clone was capable of being recruited towards at least 3 mesodermal lineages in vitro and of contributing to dentin-like or bone formation, in vivo, thus behaving as a multipotent cell. In contrast, the C5 and H8 clones displayed a more restricted potential. Flow cytometric analysis revealed that isolated monopotent and multipotent clones could be distinguished by a differential expression of CD90. Altogether, isolation of these clonal lines allowed demonstrating the coexistence of multipotential and restricted-lineage progenitors in the mouse pulp. These cells may further permit unravelling specificities of the different types of pulp progenitors, hence facilitating the development of cell-based therapies of the dental pulp or other cranio-facial tissues
    corecore