27 research outputs found

    The Effects of Neuromuscular Fatigue on the Complexity of Isometric Torque Output in Humans

    Get PDF
    The temporal structure, or complexity, of torque output is thought to reflect the adaptability of motor control and has important implications for system function, with high values endowing greater adaptability in response to alterations in task demand. The aim of this thesis was to investigate the effect of neuromuscular fatigue on the complexity of isometric muscle torque output. It was hypothesised that neuromuscular fatigue would lead to a reduction in the complexity of muscle torque output, as measured by approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) ? scaling exponent. The first experimental study (Chapter 4) demonstrated that muscle torque complexity was significantly reduced during both maximal and submaximal intermittent fatiguing contractions, with the values at task failure indicative of increasingly Brownian noise (DFA ? > 1.50). It was subsequently shown in the second study (Chapter 5) that this reduction in complexity occurred exclusively during contractions performed above the critical torque. It was next demonstrated, in the third study (Chapter 6), that pre-existing fatigue significantly reduced torque complexity and time to task failure, but still resulted in consistent values of complexity at task failure regardless of the time taken to reach that point. In the fourth study (Chapter 7) caffeine ingestion was found to slow the rate of reduction in torque complexity with fatigue, seemingly through both central and peripheral mechanisms. Finally, in the fifth study (Chapter 8) eccentric exercise decreased the complexity of torque output, with values only recovering to baseline levels after 24 hours recovery, in comparison to only 10 minutes recovery following isometric exercise. These results demonstrate that torque complexity is significantly perturbed by neuromuscular fatigue. This thesis has thus provided substantial evidence that the complexity of motor control during force production becomes less complex, and that muscles become less adaptable, with neuromuscular fatigue

    The Neuromuscular Fatigue-Induced Loss of Muscle Force Control

    Get PDF
    Neuromuscular fatigue is characterised not only by a reduction in the capacity to generate maximal muscle force, but also in the ability to control submaximal muscle forces, i.e., to generate task-relevant and precise levels of force. This decreased ability to control force is quantified according to a greater magnitude and lower complexity (temporal structure) of force fluctuations, which are indicative of decreased force steadiness and adaptability, respectively. The “loss of force control” is affected by the type of muscle contraction used in the fatiguing exercise, potentially differing between typical laboratory tests of fatigue (e.g., isometric contractions) and the contractions typical of everyday and sporting movements (e.g., dynamic concentric and eccentric contractions), and can be attenuated through the use of ergogenic aids. The loss of force control appears to relate to a fatigue-induced increase in common synaptic input to muscle, though the extent to which various mechanisms (afferent feedback, neuromodulatory pathways, cortical/reticulospinal pathways) contribute to this remains to be determined. Importantly, this fatigue-induced loss of force control could have important implications for task performance, as force control is correlated with performance in a range of tasks that are associated with activities of daily living, occupational duties, and sporting performance

    Physiological Evidence that the Critical Torque Is a Phase Transition Not a Threshold

    Get PDF
    Introduction: Distinct physiological responses to exercise occur in the heavy and severe-intensity domains, which are separated by the critical power or critical torque (CT). However, how the transition between these intensity domains actually occurs is not known. We tested the hypothesis that CT is a sudden threshold, with no gradual transition from heavy- to severe-intensity behavior within the confidence limits associated with the CT. Methods: Twelve healthy participants performed four exhaustive severe-intensity trials for the determination of CT, and four 30-minute trials in close proximity to CT (one or two standard errors above or below each participant’s CT estimate; CT–2, CT–1, CT+1, CT+2). Muscle O2 uptake (mV[Combining Dot Above]O2), rectified EMG and torque variability and complexity were monitored throughout each trial, and maximal voluntary contractions with femoral nerve stimulation were performed before and after each trial to determine central and peripheral fatigue responses. Results: The rates of change in fatigue-related variables, mV[Combining Dot Above]O2, EMG amplitude and torque complexity were significantly faster in the severe trials compared to CT–2. For example, the fall in maximal voluntary contraction (MVC) torque was –1.5 ± 0.8 N.m.min-1 in CT–2 vs. –7.9 ± 2.5 N.m.min-1 in the lowest severe-intensity trial (S1; P < 0.05). Individual analyses showed a low frequency of severe responses even in the circa-CT trials ostensibly above the CT, but also the rare appearance of severe-intensity responses in all circa-CT trials. Conclusion: These data demonstrate that the transition between heavy- and severe-intensity exercise occurs gradually rather than suddenly

    Ischemic Preconditioning Blunts Loss of Knee Extensor Torque Complexity with Fatigue

    Get PDF
    Introduction: Neuromuscular fatigue reduces the temporal structure, or complexity, of muscle torque output, purportedly through an effect on motor unit behaviour. Ischaemic pre-conditioning (IPC), an emerging ergogenic aid, has been demonstrated to have a potent effect on muscular output and endurance. We therefore tested the hypothesis that IPC would attenuate the fatigueinduced loss of muscle torque complexity. Methods: Ten healthy participants (6 male/4 female) performed intermittent isometric knee extension contractions (6 s contraction, 4 s rest) to task failure at 40% maximal voluntary contraction (MVC). Contractions were preceded by either IPC (three bouts of 5 minutes proximal thigh occlusion at 225 mmHg, interspersed with 5 minutes rest) or SHAM (as IPC, but occlusion at only 20 mmHg) treatments. Torque and EMG signals were sampled continuously. Complexity and fractal scaling were quantified using approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Muscle oxygen consumption (mV̇O2_2) was determined using near-infrared spectroscopy. Results: IPC increased time to task failure by 43 ± 13% (mean ± SEM, P = 0.047). Complexity decreased in both trials (decreased ApEn, increased DFA α; both P < 0.001), though the rate of decrease was significantly lower following IPC (ApEn, –0.2 ± 0.1 vs. –0.4 ± 0.1, P = 0.013; DFA α, 0.2 ± 0.1 vs. 0.3 ± 0.1, P = 0.037). Similarly, the rates of increase in EMG amplitude (P = 0.022) and mV̇O2_2 (P = 0.043) were significantly slower following IPC. Conclusion: These results suggest the ergogenic effect of IPC observed here is of neural origin and accounts for the slowing of the rates of change in torque complexity, EMG amplitude and muscle oxygen consumption as fatigue develops

    Variability and complexity of knee neuromuscular control during an isometric task in uninjured physically active adults: a secondary analysis exploring right/left and dominant/nondominant asymmetry

    Get PDF
    Work is needed to better understand the control of knee movement and knee health. Specifically, work is needed to further understand knee muscle force control variability and complexity and how it is organized on both sides of the body. The purpose of this study was to explore side-to-side comparisons of magnitude- and complexity-based measures of knee muscle force control to support future interpretations of complexity-based analyses and clinical reasoning in knee injury control. Participants (male/female n = 11/5) performed constant-force isometric efforts at 50% maximal effort. Force variability was quantified during the constant-force efforts using a coefficient of variation (CV%) and force complexity using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. Outcomes were right/left and dominant/nondominant group-level and individual-level comparisons. A limb-symmetry index was calculated for each variable and clinically significant absolute asymmetry was defined (&gt;15%). The only significant side-to-side difference was for right/left DFA α (p = 0.00; d = 1.12). Maximum absolute asymmetries were (right/left, dominant/nondominant): CV 18.2%, 18.0%; ApEn 34.5%, 32.3%; DFA α 4.9%, 5.0%. Different side-to-side comparisons yield different findings. Consideration for how side-to-side comparisons are performed (right/left, dominant/nondominant) is required. Because a significant difference existed for complexity but not variability, this indicates that both complexity-based and magnitude-based measures should be used when studying knee muscle force control

    Knee extensor force control as a predictor of dynamic balance in healthy adults

    Get PDF
    Background Previous research has demonstrated that force control in various muscles of the lower limb (measured according to the magnitude of force fluctuations) explains significant variance in static balance. Given the dynamic nature of many functional activities and sports, assessment of balance and its determinants under dynamic conditions is of importance. Research question Does muscle force control explain significant variance in dynamic balance, as measured using the Y balance test (YBT)? Methods YBT performance and knee extensor muscle force control were measured in 28 healthy participants. The YBT involved stance on the right leg and attempting maximal reach with the left leg in the anterior, posteromedial, and posterolateral directions. Force control was assessed during isometric knee extension contractions of the right leg at 10%, 20% and 40% maximal voluntary contraction (MVC) and was quantified according to the magnitude (using the coefficient of variation [CV]), and the temporal structure (using sample entropy, SampEn; and detrended fluctuation analysis α), of force fluctuations. Results Significant correlations were observed for YBT anterior reach and muscle force CV (r = –0.44, P = 0.02) and SampEn (r = 0.47, P = 0.012) during contractions at 40% MVC. A subsequent regression model demonstrated that muscle force CV and SampEn at 40% MVC significantly explained 54% of variance in YBT anterior reach. Significant correlations were also observed for YBT posteromedial reach and MVC (r = 0.39, P = 0.043) and muscle force CV during contractions at 40% MVC (r = –0.51, P = 0.006). The regression model demonstrated that MVC and muscle force CV at 40% MVC significantly explained 53.9% of variance in YBT posteromedial reach. Significance These results are the first to indicate that a moderate amount of variance in dynamic balance can be explained by measures of isometric force control

    Prolonged static stretching increases the magnitude and decreases the complexity of knee extensor muscle force fluctuations.

    Get PDF
    Static stretching decreases maximal muscle force generation in a dose-response manner, but its effects on the generation of task-relevant and precise levels of submaximal force, i.e. force control, is unclear. We investigated the effect of acute static stretching on knee extensor force control, quantified according to both the magnitude and complexity of force fluctuations. Twelve healthy participants performed a series of isometric knee extensor maximal voluntary contractions (MVCs) and targeted intermittent submaximal contractions at 25, 50 and 75% MVC (3 x 6 seconds contraction separated by 4 seconds rest, with 60 seconds rest between each intensity) prior to, and immediately after, one of four continuous static stretch conditions: 1) no stretch; 2) 30-second stretch; 3) 60-second stretch; 4) 120-second stretch. The magnitude of force fluctuations was quantified using the standard deviation (SD) and coefficient of variation (CV), while the complexity of fluctuations was quantified using approximate entropy (ApEn) and detrended fluctuation analysis (DFA) α. These measures were calculated using the steadiest 5 seconds of the targeted submaximal contractions at each intensity (i.e., that with the lowest SD). Significant decreases in MVC were evident following the 30, 60 and 120-second stretch conditions (all P < 0.001), with a significant correlation observed between stretch duration and the magnitude of decrease in MVC (r = -0.58, P < 0.001). The 120-second stretch resulted in significant increases in SD at 50% MVC (P = 0.007) and CV at 50% (P = 0.009) and 75% MVC (P = 0.005), and a significant decrease in ApEn at 75% MVC (P < 0.001). These results indicate that the negative effects of prolonged static stretching extend beyond maximal force generation tasks to those involving generation of precise levels of force during moderate- to high-intensity submaximal contractions

    Alterations in peripheral joint muscle force control in adults with musculoskeletal disease, injury, surgery, or arthroplasty: A systematic review and meta-analysis

    Get PDF
    Purpose To systematically review and analyse whether musculoskeletal conditions affect peripheral joint muscle force control (i.e. magnitude and/or complexity of force fluctuations). Methods A literature search was conducted using MEDLINE, CINAHL and SPORTDiscus databases (from inception-8th April 2021) for studies involving: 1) participants with musculoskeletal disease, injury, surgery, or arthroplasty in the peripheral joints of the upper/lower limb; 2) comparison with an unaffected control group or unaffected contralateral limb; and 3) measures of the magnitude and/or complexity of force fluctuations during targeted isometric contractions. The methodological quality of studies was evaluated using a modified Downs and Black Quality Index. Studies were combined using the standardized mean difference (SMD) in a random-effects model. Results 14 studies (investigating 694 participants) were included in the meta-analysis. There was a significant effect of musculoskeletal conditions on peripheral joint muscle force coefficient of variation (CV; SMD = 0.19 [95 % CI 0.06, 0.32]), whereby individuals with musculoskeletal conditions exhibited greater CV than controls. Subgroup analyses revealed that CV was only greater: 1) when comparison was made between symptomatic and asymptomatic individuals (rather than between affected and contralateral limbs; SMD = 0.22 [95 % CI 0.07, 0.38]); 2) for conditions of the knee (SMD = 0.29 [95 % CI 0.14, 0.44]); and 3) for ACL injury post-surgery (SMD = 0.56 [95 % CI 0.36, 0.75]). Conclusion Musculoskeletal conditions result in an increase in peripheral joint muscle force CV, with this effect dependent on study design, peripheral joint, and surgical status. The greater force CV is indicative of decreased force steadiness and could have implications for long-term tissue health/day-to-day function

    The Effect of Breaking Up Sedentary Time with Calisthenics on Neuromuscular Function: A Preliminary Study

    Get PDF
    The ageing process results in reduced neuromuscular function. This alongside prolonged sedentary behaviour is associated with decreased muscle strength, force control and ability to maintain balance. Breaking up sedentary time with regular bouts of physical activity has numerous health benefits, though the effects on neuromuscular function are unknown. This study investigated the effect of breaking up sedentary time with calisthenic exercise on neuromuscular function. 17 healthy adults (33 ± 13.1 years), who spent ≥6 h/day sitting, were assigned to a four-week calisthenics intervention (n = 8) or control group (n = 9). The calisthenics intervention involved performing up to eight sets of exercises during the working day (09:00–17:00); with one set consisting of eight repetitions of five difference exercises (including squats and lunges). Before and immediately after the intervention, measures of knee extensor maximal voluntary contraction (MVC) and submaximal force control (measures of the magnitude and complexity of force fluctuations), and dynamic balance (Y balance test) were taken. The calisthenics intervention resulted in a significant increase in knee extensor MVC (p = 0.036), significant decreases in the standard deviation (p = 0.031) and coefficient of variation (p = 0.016) of knee extensor force fluctuations during contractions at 40% MVC, and a significant increase in Y balance test posterolateral reach with left leg stance (p = 0.046). These results suggest that breaking up sedentary time with calisthenics may be effective at increasing muscle strength, force steadiness and dynamic balance all of which might help reduce the effects of the ageing process
    corecore