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Physiological outputs are characterised by constant fluctuations, even under resting 

conditions.1 Quantifying and characterising this variability represents an important 

methodological challenge. Variability in physiological outputs has traditionally been quantified 

according to its magnitude, using measures such as the standard deviation (SD).2 Such 

magnitude-based measures have provided substantial insight into the analysis of physiological 

outputs; with changes in the magnitude of variability associated with adverse events in a 

number of systems.2 However, physiological outputs are characterised by irregular self-similar 

fluctuations (“complexity”) over multiple orders of temporal magnitude (i.e. seconds, minutes, 

hours); a property magnitude-based measures cannot quantify.3 Complexity measures derive 

from non-linear dynamics, and include metrics related to information theory (e.g. entropy 

statistics), which provide a measure of the apparent regularity or randomness of a system’s 

output, and metrics drawn from fractal geometry, which identify long-range correlations 

present in an output.4 It has been suggested that neither magnitude- nor complexity-based 

metrics should be used as the sole indicator of system characteristics; rather, they should be 

used in conjunction, in order to provide a more complete understanding of variability.2,5 

Entropy statistics

Entropy, as embodied in the Second Law of Thermodynamics, is a measure of disorder or 

randomness that tends towards a maximum in an isolated system.6 As it relates to dynamical 

(i.e. physiological) systems, entropy is thought of as the rate of information generation and can 

be used to quantify the apparent randomness or regularity (i.e. complexity) of an output. To 

understand entropy statistics and contrast them with magnitude-based measures of variability, 

consider the following example.7 There are two time-series: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 

2…. and 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2…. The first time-series continually alternates 

between 1 and 2. In the second time-series, each value is either 1 or 2, but randomly chosen 
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with probability ½ of either value. Statistics such as the mean and SD cannot distinguish 

between these time-series. However, the first time-series is perfectly regular; knowing that one 

value is 1 allows us to predict that the next value will be 2. In contrast, the second time-series 

is random; knowing that one value is 1 gives no indication whether the next term will be 1 or 

2. Entropy statistics, therefore, can distinguish between such clearly different time-series and 

allow the determination of differences in regularity.7 This is illustrated in a physiological output 

in Figure 1.

Approximate entropy (ApEn) derives from Kolmogorov-Sinai entropy in an information theory 

sense, and was developed as a model-independent quantification of the regularity of a time-

series.8 It provides an index of the predictability of future values in a time-series based on past 

events. ApEn is equal to the negative natural logarithm of the conditional probability that a 

template of length m is repeated, within a specific tolerance r, during a time-series.8 ApEn 

measures the difference between the logarithmic frequencies of similar runs of length m and 

runs with length m+1. Values close to 0 indicate that the prevalence of repetitive runs of length 

m and m+1 do not differ significantly and reflect greater regularity and low complexity.6 Values 

close to 2 correspond to greater irregularity and high complexity. High entropy values, though, 

such as that of white noise, are not necessarily physiologically complex. Therefore, other 

metrics that can differentiate random (i.e. white noise), statistically self-similar (i.e. pink or 1/f 

noise) and Brownian outputs are necessary to fully characterise physiologic complexity.9

ApEn is, however, not without shortcomings. It has been criticised due to the algorithm 

counting each sequence as matching itself, meaning it can be sensitive to the size of the time-

series, giving uniformly lower than expected values when the time-series is short, and resulting 

in a lack of relative consistency.6,10 This led to the development of sample entropy (SampEn), 

Page 3 of 8 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

which discounts self-matches on the basis that entropy is the rate of information generation 

and, in this context, comparing data with themselves is meaningless.10 SampEn is precisely the 

negative natural logarithm of the conditional probability that two sequences similar for m points 

remain within the tolerance r at the next point, without allowing self-matches.10 As with ApEn, 

low values of SampEn (approaching 0) indicate greater regularity and low complexity.

Fractal geometry

Fractals are traditionally viewed as complex geometric structures, which display self-similarity 

regardless of the scale used to examine them (e.g. the Sierpinski triangle).3 However, in the 

1960s, the mathematician Benoit Mandelbrot realised they represent a suitable geometry to 

describe the complex shapes of nature. The example he proposed was a coastline,11 which 

appears to maintain the same degree of self-similarity across multiple length-scales. From a 

physiological perspective, many anatomic structures (e.g. the bronchial tree, dendrites in the 

nervous system) exhibit fractal-like geometry and self-similarity.3 Physiological outputs can 

also be fractal, generating irregular fluctuations over multiple time-scales, analogous to objects 

with branching structures across multiple length-scales.3

The fractal dimension (FD) was the original measure Mandelbrot developed and characterises 

the self-similarity of a time-series.12 It is calculated using a box-counting method. The time-

series is superimposed onto a grid and the number of boxes it passes through is counted, with 

this procedure repeated as box-size is varied. The slope of a plot of the logarithm of the number 

of boxes entered versus the logarithm of the inverse of the box-size gives the FD. Unlike 

traditional Euclidian geometry where lines, planes and volumes have dimensions of 1, 2 and 3, 

respectively, a fractal time-series will have a dimension between 1 and 2, with higher values 

occurring for more irregular time-series.6

Page 4 of 8Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Detrended fluctuation analysis (DFA) detects long-range correlations in a time-series, thus 

providing an indication of temporal fractal scaling.13 To calculate DFA, a moving window of 

size n is used to study how the fluctuation F(n) grows with n for the time-series.6 The 

relationship between F(n) and n can be graphed, with a fractal correlation present if the data is 

linear on a graph of log F(n) versus log (n). The slope of this line determines the scaling 

exponent α,6 which theoretically ranges from ~0.5 to ~1.5 for physiological outputs.3 When α 

= 0.5, each value in a time-series is completely random (i.e. white noise) and independent from 

previous values. When α > 0.5, each value is correlated, to some extent, with previous values. 

An α of 1.0 (i.e. 1/f or pink noise) is typical of physiological outputs and consistent with 

statistically self-similar fluctuations and long-range correlations. An α of 1.5 is indicative of 

Brownian noise, and a smooth output with long-term memory.3

Conclusion

There has, in recent years, been increasing interest in the analysis of variability in physiological 

outputs. This has led to the development of numerous new techniques, in addition to those 

described above, to characterise physiologic complexity. Numerous studies on a diverse range 

of physiological outputs (including, inter alia, heart rate, the electroencephalogram, gait and 

muscle force) have demonstrated that entropy and fractal scaling measures are sensitive to both 

acute (e.g. neuromuscular fatigue)4 and chronic (e.g. ageing)9 perturbations. Thus, entropy and 

fractal scaling measures represent important techniques for characterising and differentiating 

physiologic outputs. 
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Figure 1 caption: Illustration of how entropy statistics are able to differentiate physiological 

outputs, in this case muscle torque during contractions performed at 40% of a participant’s 

maximal voluntary contraction, with the same mean and magnitude of variability.
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Mean = 109.0 N·m

SD = 2.3 N·m
ApEn = 0.46

Mean = 108.5 N·m
SD = 2.3 N·m
ApEn = 0.24

Mean = 108.6 N·m
SD = 2.4 N·m
ApEn = 0.17

20 N·m

1 s
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