24 research outputs found

    Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential

    Get PDF
    The apigenin-phospholipid phytosome (APLC) was developed to improve the aqueous solubility, dissolution, in vivo bioavailability, and antioxidant activity of apigenin. The APLC synthesis was guided by a full factorial design strategy, incorporating specific formulation and process variables to deliver an optimized product. The design-optimized formulation was assayed for aqueous solubility, in vitro dissolution, pharmacokinetics, and antioxidant activity. The pharmacological evaluation was carried out by assessing its effects on carbon tetrachloride-induced elevation of liver function marker enzymes in a rat model. The antioxidant activity was assessed by studying its effects on the liver antioxidant marker enzymes. The developed model was validated using the design-optimized levels of formulation and process variables. The physical-chemical characterization confirmed the formation of phytosomes. The optimized formulation demonstrated over 36-fold higher aqueous solubility of apigenin, compared to that of pure apigenin. The formulation also exhibited a significantly higher rate and extent of apigenin release in dissolution studies. The pharmacokinetic analysis revealed a significant enhancement in the oral bioavailability of apigenin from the prepared formulation, compared to pure apigenin. The liver function tests indicated that the prepared phytosome showed a significantly improved restoration of all carbon tetrachloride-elevated rat liver function marker enzymes. The prepared formulation also exhibited antioxidant potential by significantly increasing the levels of glutathione, superoxide dismutase, catalase, and decreasing the levels of lipid peroxidase. The study shows that phospholipid-based phytosome is a promising and viable strategy for improving the delivery of apigenin and similar phytoconstituents with low aqueous solubility

    Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Get PDF
    The current work describes the formulation and evaluation of a phospholipid complex of kaempferol toenhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotectiveactivities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32) approach. The resultsinclude the validation of the mathematical model in order to ascertain the role of specific formulation andprocess variables that contribute favorably to the formulation’s development. The final product wascharacterized and confirmed by Differential Scanning Calorimetry (DSC), Fourier Transform InfraredSpectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), and Powder X-rayDiffraction (PXRD) analysis. The aqueous solubility and the in vitro dissolution rate were enhanced comparedto that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex wereevaluated by measuring its impact on carbon tetrachloride (CCl4)-intoxicated rats. The optimizedphospholipid complex improved the liver function test parameters to a significant level by restoration of allelevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidantpotential by increasing levels of GSH (reduced glutathione), SOD (superoxide dismutase), catalase anddecreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipidcomplex also demonstrated a significant improvement in oral bioavailability demonstrated by improvementsto key pharmacokinetic parameters, compared to that of pure kaempferol

    Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir

    Get PDF
    The objective of the work presented here was to assess the feasibility of using glucosamine HCl as a solid-dispersion (SD) carrier to enhance the biopharmaceutical properties of a BCS class III/IV drug, acyclovir (ACV). The solid-dispersions of acyclovir and glucosamine HCl were prepared by an ethanol-based solvent evaporation method. The prepared formulations characterized by photomicroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transforms infrared spectrophotometry (FTIR), powder x-ray diffractometry (PXRD) and drug content analysis. The functional characterization of ACV-SD was performed by aqueous solubility evaluation, dissolution studies, fasted versus fed state dissolution comparison, ex vivo permeability, and stability studies. Photomicroscopy and SEM analysis showed different surface morphologies for pure ACV, glucosamine HCl and ACV-SD. The physical-chemical characterization studies supported the formation of ACV-SD. A 12-fold enhancement in the aqueous solubility of ACV was observed in the prepared solid dispersions, compared to pure ACV. Results from in vitro dissolution demonstrated a significant increase in the rate and extent of ACV dissolution from the prepared ACV-SD formulations, compared to pure ACV. The rate and extent of ACV permeability across everted rat intestinal membrane were also found to be significantly increased in the ACV-SD formulations. Under fed conditions, the rate and extent of the in vitro dissolution of ACV from the formulation was appreciably greater compared to fasted conditions. Overall, the results from the study suggest the feasibility of utilizing glucosamine HCl as a solid dispersion carrier/excipient for enhancement of biopharmaceutical properties of acyclovir, and similar drugs with low solubility/permeability characteristics

    Formulation and Characterization of the Improved Solubility, In Vivo Bioavailability and Antioxidant Activity of Apigenin-Phospholipid Complex (APLC)

    Get PDF
    In the present study a phospholipid based complex of apigenin (APLC) was prepared with a goal of improving its aqueous solubility, dissolution, in vivobioavailability, and antioxidant activity

    Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Get PDF
    The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32) approach. Our results include the validation of the mathematical model in order to ascertain the role of specific formulation and process variables that contribute favorably to the formulation’s development. The final product was characterized and confirmed by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), and Powder X-ray Diffraction (PXRD) analysis. The aqueous solubility and the in vitro dissolution rate were enhanced compared to that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex were evaluated by measuring its impact on carbon tetrachloride (CCl4)-intoxicated rats. The optimized phospholipid complex improved the liver function test parameters to a significant level by restoration of all elevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidant potential by increasing levels of GSH (reduced glutathione), SOD (superoxide dismutase), catalase and decreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipid complex also demonstrated a significant improvement in oral bioavailability demonstrated by improvements to key pharmacokinetic parameters, compared to that of pure kaempferol

    Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3

    Get PDF
    Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-ca​rboxamide(THPP) and N-benzyl-6′,7′-dihydrospiro[piperidine-4,​4′-thieno[3,2-c]pyran](Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This ‘genetic phenotype’ was further confirmed by a ‘chemical phenotype’, whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice

    Detection of Pathogenic Mycobacteria Based on Functionalized Quantum Dots Coupled with Immunomagnetic Separation

    Get PDF
    Mycobacteria have always proven difficult to identify due to their low growth rate and fastidious nature. Therefore molecular biology and more recently nanotechnology, have been exploited from early on for the detection of these pathogens. Here we present the first stage of development of an assay incorporating cadmium selenide quantum dots (QDs) for the detection of mycobacterial surface antigens. The principle of the assay is the separation of bacterial cells using magnetic beads coupled with genus-specific polyclonal antibodies and monoclonal antibodies for heparin-binding hemagglutinin. These complexes are then tagged with anti-mouse biotinylated antibody and finally streptavidin-conjugated QDs which leads to the detection of a fluorescent signal. For the evaluation of performance, the method under study was applied on Mycobacterium bovis BCG and Mycobacterium tuberculosis (positive controls), as well as E. coli and Salmonella spp. that constituted the negative controls. The direct observation of the latter category of samples did not reveal fluorescence as opposed to the mycobacteria mentioned above. The minimum detection limit of the assay was defined to 104 bacteria/ml, which could be further decreased by a 1 log when fluorescence was measured with a spectrofluorometer. The method described here can be easily adjusted for any other protein target of either the pathogen or the host, and once fully developed it will be directly applicable on clinical samples

    Methylated HBHA Produced in M. smegmatis Discriminates between Active and Non-Active Tuberculosis Disease among RD1-Responders

    Get PDF
    A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-\u3b3 response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-\u3b3 response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT

    Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target.

    Get PDF
    The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å
    corecore