3,951 research outputs found

    Dimensional reduction in QCD: Lessons from lower dimensions

    Get PDF
    In this contribution we present the results of a series of investigations of dimensional reduction, applied to SU(3) gauge theory in 2 + 1 dimensions. We review earlier results, present a new reduced model with Z(3) symmetry, and discuss the results of numerical simulations of this model.Comment: 10 pages, Talk given at Workshop on Finite Density QCD, Nara Japan 10-12 Jul 200

    Screening Masses in Dimensionally Reduced (2+1)D Gauge Theory

    Get PDF
    We discuss the screening masses and residue factorisation of the SU(3) (2+1)D theory in the dimensional reduction formalism. The phase structure of the reduced model is also investigated.Comment: 3 pages, Lattice 2001(gaugetheories

    Z(3) Symmetric Dimensional Reduction of (2+1)D QCD

    Get PDF
    Here we present a candidate for a Z(3)-symmetric reduced action for the description of the (2+1)D SU(3) gauge theoryComment: 2 pages, Statistical QCD pro

    Three dimensional finite temperature SU(3) gauge theory in the confined region and the string picture

    Full text link
    We determine the correlation between Polyakov loops in three dimensional SU(3) gauge theory in the confined region at finite temperature. For this purpose we perform lattice calculations for the number of steps in the temperature direction equal to six. This is expected to be in the scaling region of the lattice theory. We compare the results to the bosonic string model. The agreement is very good for temperatures T<0.7T_c, where T_c is the critical temperature. In the region 0.7T_c<T<T_c we enter the critical region, where the critical properties of the correlations are fixed by universality to be those of the two dimensional three state Potts model. Nevertheless, by calculating the critical lattice coupling, we show that the ratio of the critical temperature to the square root of the zero temperature string tension, where the latter is taken from the literature, remains very near to the string model prediction.Comment: 11 pages, 1 figure, 1 tabl

    The Weak-Coupling Limit of 3D Simplicial Quantum Gravity

    Get PDF
    We investigate the weak-coupling limit, kappa going to infinity, of 3D simplicial gravity using Monte Carlo simulations and a Strong Coupling Expansion. With a suitable modification of the measure we observe a transition from a branched polymer to a crinkled phase. However, the intrinsic geometry of the latter appears similar to that of non-generic branched polymer, probable excluding the existence of a sensible continuum limit in this phase.Comment: 3 pages 4 figs. LATTICE99(Gravity

    Random matrix model for QCD_3 staggered fermions

    Full text link
    We show that the lowest part of the eigenvalue density of the staggered fermion operator in lattice QCD_3 at small lattice coupling constant beta has exactly the same shape as in QCD_4. This observation is quite surprising, since universal properties of the QCD_3 Dirac operator are expected to be described by a non-chiral matrix model. We show that this effect is related to the specific nature of the staggered fermion discretization and that the eigenvalue density evolves towards the non-chiral random matrix prediction when beta is increased and the continuum limit is approached. We propose a two-matrix model with one free parameter which interpolates between the two limits and very well mimics the pattern of evolution with beta of the eigenvalue density of the staggered fermion operator in QCD_3.Comment: 8 pages 4 figure

    Critical Behaviour of the 3d Gross-Neveu and Higgs-Yukawa Models

    Full text link
    We measure the critical exponents of the three dimensional Gross-Neveu model with two four-component fermions. The exponents are inferred from the scaling behaviour of observables on different lattice sizes. We also calculate the exponents, through a second order epsilon-expansion around 4d, for the three dimensional Higgs-Yukawa model, which is expected to be in the same universality class and we find that the exponents agree. We conclude that the equivalence of the two models remains valid in 3d at fixed small N_f values.Comment: 14 Latex pages 8 PSfigures included at the end,BI-TP-93/31,AZPH-TH/93-19,SPhT 93/0

    Dimensional reduction and a Z(3) symmetric model

    Full text link
    We present first results from a numerical investigation of a Z(3) symmetric model based on dimensional reduction.Comment: Talk presented at XXI International Symposium on Lattice Field Theory lattice2003(Non-zero temperature and density

    QCD with Adjoint Scalars in 2D: Properties in the Colourless Scalar Sector

    Get PDF
    We present a numerical study of an SU(3) gauged 2D model for adjoint scalar fields, defined by dimensional reduction of pure gauge QCD in (2+1)D at high temperature. In the symmetric phase of its global Z_2 symmetry, two colourless boundstates, even and odd under Z_2, are identified. Their respective contributions (poles) in correlation functions of local composite operators A_n of degree n=2p and 2p+1 in the scalar fields (p=1,2) fulfill factorization. The contributions of two particle states (cuts) are detected. Their size agrees with estimates based on a meanfield-like decomposition of the p=2 operators into polynomials in p=1 operators. No sizable signal in any A_n correlation can be attributed to 1/n times a Debye screening length associated with n elementary fields. These results are quantitatively consistent with the picture of scalar ``matter'' fields confined within colourless boundstates whose residual ``strong'' interactions are very weak.Comment: 27 pages, improved presentation of results and some references added, as accepted by Nucl. Phys.
    corecore