2,845 research outputs found
Phase transition and topology in 4d simplicial gravity
We present data indicating that the recent evidence for the phase transition
being of first order does not result from a breakdown of the ergodicity of the
algorithm. We also present data showing that the thermodynamical limit of the
model is independent of topology.Comment: 3 latex pages + 4 ps fig. + espcrc2.sty. Talk presented at
LATTICE(gravity
4d Simplicial Quantum Gravity Interacting with Gauge Matter Fields
The effect of coupling non-compact gauge fields to four dimensional
simplicial quantum gravity is studied using strong coupling expansions and
Monte Carlo simulations. For one gauge field the back-reaction of the matter on
the geometry is weak. This changes, however, as more matter fields are
introduced. For more than two gauge fields the degeneracy of random manifolds
into branched polymers does not occur, and the branched polymer phase seems to
be replaced by a new phase with a negative string susceptibility exponent
and fractal dimension .Comment: latex2e, 10 pages incorporating 2 tables and 3 figures (using epsf
Variety of idempotents in nonassociative algebras
In this paper, we study the variety of all nonassociative (NA) algebras from
the idempotent point of view. We are interested, in particular, in the spectral
properties of idempotents when algebra is generic, i.e. idempotents are in
general position. Our main result states that in this case, there exist at
least nontrivial obstructions (syzygies) on the Peirce spectrum of a
generic NA algebra of dimension . We also discuss the exceptionality of the
eigenvalue which appears in the spectrum of idempotents in
many classical examples of NA algebras and characterize its extremal properties
in metrised algebras.Comment: 27 pages, 1 figure, submitte
The Strong-Coupling Expansion in Simplicial Quantum Gravity
We construct the strong-coupling series in 4d simplicial quantum gravity up
to volume 38. It is used to calculate estimates for the string susceptibility
exponent gamma for various modifications of the theory. It provides a very
efficient way to get a first view of the phase structure of the models.Comment: LATTICE98(surfaces), 3 pages, 4 eps figure
A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site
To study conformational transitions at the muscle nicotinic acetylcholine (ACh) receptor (nAChR), a rhodamine fluorophore was tethered to a Cys side chain introduced at the beta-19' position in the M2 region of the nAChR expressed in Xenopus oocytes. This procedure led to only minor changes in receptor function. During agonist application, fluorescence increased by (Delta-F/F) approximate to 10%, and the emission peak shifted to lower wavelengths, indicating a more hydrophobic environment for the fluorophore. The dose-response relations for Delta-F agreed well with those for epibatidine-induced currents, but were shifted approximate to 100-fold to the left of those for ACh-induced currents. Because (i) epibatidine binds more tightly to the alpha-gamma-binding site than to the alpha-delta site and (ii) ACh binds with reverse-site selectivity, these data suggest that Delta-F monitors an event linked to binding specifically at the alpha-delta-subunit interface. In experiments with flash-applied agonists, the earliest detectable Delta-F occurs within milliseconds, i.e., during activation. At low [ACh] (less than or equal to 10 muM), a phase of Delta-F occurs with the same time constant as desensitization, presumably monitoring an increased population of agonist-bound receptors. However, recovery from Delta-F is complete before the slowest phase of recovery from desensitization (time constant approximate to 250 s), showing that one or more desensitized states have fluorescence like that of the resting channel. That conformational transitions at the alpha-delta-binding site are not tightly coupled to channel activation suggests that sequential rather than fully concerted transitions occur during receptor gating. Thus, time-resolved fluorescence changes provide a powerful probe of nAChR conformational changes
Bias spectroscopy and simultaneous SET charge state detection of Si:P double dots
We report a detailed study of low-temperature (mK) transport properties of a
silicon double-dot system fabricated by phosphorous ion implantation. The
device under study consists of two phosphorous nanoscale islands doped to above
the metal-insulator transition, separated from each other and the source and
drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers.
Metallic control gates, together with an Al-AlOx single-electron transistor,
were positioned on the substrate surface, capacitively coupled to the buried
dots. The individual double-dot charge states were probed using source-drain
bias spectroscopy combined with non-invasive SET charge sensing. The system was
measured in linear (VSD = 0) and non-linear (VSD 0) regimes allowing
calculations of the relevant capacitances. Simultaneous detection using both
SET sensing and source-drain current measurements was demonstrated, providing a
valuable combination for the analysis of the system. Evolution of the triple
points with applied bias was observed using both charge and current sensing.
Coulomb diamonds, showing the interplay between the Coulomb charging effects of
the two dots, were measured using simultaneous detection and compared with
numerical simulations.Comment: 7 pages, 6 figure
Recommended from our members
Tracer concentration profiles measured in central London as part of the REPARTEE campaign
There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regentâs Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London
Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study
AbstractSignatory countries to the United Nations Framework Convention on Climate Change (UNFCCC) and its supplementary Kyoto Protocol (KP) are obliged to report greenhouse gas emissions and removals. Changes in the carbon stock of living biomass should be reported using either the default or stock change methods of the Intergovernmental Panel on Climate Change (IPCC) under the Land Use, Land-Use Change and Forestry sector. Traditionally, volume estimates are used as a forestry measures. Changes in living biomass may be assessed by first estimating the change in the volume of stem wood and then converting this volume to whole tree biomass using biomass expansion factors (BEFs). However, this conversion is often non-trivial because the proportion of stem wood increases with tree size at the expense of branches, foliage, stump and roots. Therefore, BEFs typically vary over time and their use may result in biased estimates. The objective of this study was to evaluate differences between biomass estimates obtained using biomass equations and BEFs with particular focus on uncertainty analysis. Assuming that the development of tree fractions in different ways can be handled by individual biomass equations, BEFs for standing stock were shown to overestimate the biomass sink capacity (Sweden). Although estimates for BEFs derived for changes in stock were found to be unbiased, the estimated BEFs varied substantially over time (0.85â1.22ton CO2/m3). However, to some extent this variation may be due to random sampling errors rather than actual changes. The highest accuracy was obtained for estimates based on biomass equations for different tree fractions, applied to data from the Swedish National Forest Inventory using a permanent sample design (estimated change in stock 1990â2005: 420million tons CO2, with a standard error amounting to 26.7million tons CO2) Many countries have adopted such a design combined with the stock change method for reporting carbon stock changes under the UNFCCC/KP
- âŠ