16,507 research outputs found

    Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies

    Get PDF
    We present the light curves obtained during an eight-year program of optical spectroscopic monitoring of nine Seyfert 1 galaxies: 3C 120, Akn 120, Mrk 79, Mrk 110, Mrk 335, Mrk 509, Mrk 590, Mrk 704, and Mrk 817. All objects show significant variability in both the continuum and emission-line fluxes. We use cross-correlation analysis to derive the sizes of the broad Hbeta-emitting regions based on emission-line time delays, or lags. We successfully measure time delays for eight of the nine sources, and find values ranging from about two weeks to a little over two months. Combining the measured lags and widths of the variable parts of the emission lines allows us to make virial mass estimates for the active nucleus in each galaxy. The virial masses are in the range 10^{7-8} solar masses.Comment: 24 pages, 16 figures. Accepted for publication in Ap

    Fractional quantum Hall effects in bilayers in the presence of inter-layer tunneling and charge imbalance

    Full text link
    Two-component fractional quantum Hall systems are providing a major motivation for a large section of the physics community. Here we study two-component fractional quantum Hall systems in the spin-polarized half-filled lowest Landau level (filling factor 1/2) and second Landau level (filling factor 5/2) with exact diagonalization utilizing both the spherical and torus geometries. The two distinct two-component systems we consider are the true bilayer and effective bilayers (wide-quantum-well). In each model (bilayer and wide-quantum-well) we completely take into account inter-layer tunneling and charge imbalancing terms. We find that in the half-filled lowest Landau level, the FQHE is described by the two-component Abelian Halperin 331 state which is remarkably robust to charge imbalancing. In the half-filled second Landau, we find that the FQHE is likely described by the non-Abelian Moore-Read Pfaffian state which is also quite robust to charge imbalancing. Furthermore, we suggest the possibility of experimentally tuning from an Abelian to non-Abelian FQHE state in the second Landau level, and comment on recent experimental studies of FQHE in wide quantum well structures.Comment: 25 pages, 27 figure

    Probe-diverse ptythography

    Get PDF
    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme

    Conceptual mechanization studies for a horizon definition spacecraft structures and thermal subsystem

    Get PDF
    Conceptual mechanization for horizon definition spacecraft structures and thermal subsystem - spin-stabilized, hexagonal cylinder for launch of two-stage Improved Delta /DSV-3N

    Standards for educational, edutainment, and developmentally beneficial computer games

    Get PDF
    The results of a comprehensive review of the body of research concerning the developmental and educational value of computer gaming for children is reported. Based on the review, design criteria are proposed for educational and edutainment computer games. In addition, a hierarchy of educational, edutainment, and entertainment game categories is introduced. It is argued that a standard educational labeling system is needed to assist parents and teachers with selecting computer games. A gap in the research is highlighted with regard to the affordances of computer games to facilitate the development of young children’s higher order thinking. It is recommended that further research be conducted to identify foundational educational theories for the design and assessment of games. And finally, it is argued that teachers need both training and encouragement to build the confidence required to guide computer game use

    Quantum Hall Phase Diagram of Second Landau-level Half-filled Bilayers: Abelian versus Non-Abelian States

    Full text link
    The quantum Hall phase diagram of the half-filled bilayer system in the second Landau level is studied as a function of tunneling and layer separation using exact diagonalization. We make the striking prediction that bilayer structures would manifest two distinct branches of incompressible fractional quantum Hall effect (FQHE) corresponding to the Abelian 331 state (at moderate to low tunneling and large layer separation) and the non-Abelian Pfaffian state (at large tunneling and small layer separation). The observation of these two FQHE branches and the quantum phase transition between them will be compelling evidence supporting the existence of the non-Abelian Pfaffian state in the second Landau level.Comment: 4 pages, 3 figure

    Brownian dynamics around the core of self-gravitating systems

    Full text link
    We derive the non-Maxwellian distribution of self-gravitating NN-body systems around the core by a model based on the random process with the additive and the multiplicative noise. The number density can be obtained through the steady state solution of the Fokker-Planck equation corresponding to the random process. We exhibit that the number density becomes equal to that of the King model around the core by adjusting the friction coefficient and the intensity of the multiplicative noise. We also show that our model can be applied in the system which has a heavier particle. Moreover, we confirm the validity of our model by comparing with our numerical simulation.Comment: 11 pages, 4 figure

    Orbital Landau level dependence of the fractional quantum Hall effect in quasi-two dimensional electron layers: finite-thickness effects

    Full text link
    The fractional quantum Hall effect (FQHE) in the second orbital Landau level at filling factor 5/2 remains enigmatic and motivates our work. We consider the effect of the quasi-2D nature of the experimental FQH system on a number of FQH states (fillings 1/3, 1/5, 1/2) in the lowest, second, and third Landau levels (LLL, SLL, TLL,) by calculating the overlap, as a function of quasi-2D layer thickness, between the exact ground state of a model Hamiltonian and the consensus variational wavefunctions (Laughlin wavefunction for 1/3 and 1/5 and the Moore-Read Pfaffian wavefunction for 1/2). Using large overlap as a stability, or FQHE robustness, criterion we find the FQHE does not occur in the TLL (for any thickness), is the most robust for zero thickness in the LLL for 1/3 and 1/5 and for 11/5 in the SLL, and is most robust at finite-thickness (4-5 magnetic lengths) in the SLL for the mysterious 5/2 state and the 7/3 state. No FQHE is found at 1/2 in the LLL for any thickness. We examine the orbital effects of an in-plane (parallel) magnetic field finding its application effectively reduces the thickness and could destroy the FQHE at 5/2 and 7/3, while enhancing it at 11/5 as well as for LLL FQHE states. The in-plane field effects could thus be qualitatively different in the LLL and the SLL by virtue of magneto-orbital coupling through the finite thickness effect. In the torus geometry, we show the appearance of the threefold topological degeneracy expected for the Pfaffian state which is enhanced by thickness corroborating our findings from overlap calculations. Our results have ramifications for wavefunction engineering--the possibility of creating an optimal experimental system where the 5/2 FQHE state is more likely described by the Pfaffian state with applications to topological quantum computing.Comment: 27 pages, 20 figures, revised version (with additional author) as accepted for publication in Physical Review

    Subband Engineering Even-Denominator Quantum Hall States

    Full text link
    Proposed even-denominator fractional quantum Hall effect (FQHE) states suggest the possibility of excitations with non-Abelian braid statistics. Recent experiments on wide square quantum wells observe even-denominator FQHE even under electrostatic tilt. We theoretically analyze these structures and develop a procedure to accurately test proposed quantum Hall wavefunctions. We find that tilted wells favor partial subband polarization to yield Abelian even-denominator states. Our results show that tilting quantum wells effectively engineers different interaction potentials allowing exploration of a wide variety of even-denominator states
    • …
    corecore