28,904 research outputs found
Merging -means with hierarchical clustering for identifying general-shaped groups
Clustering partitions a dataset such that observations placed together in a
group are similar but different from those in other groups. Hierarchical and
-means clustering are two approaches but have different strengths and
weaknesses. For instance, hierarchical clustering identifies groups in a
tree-like structure but suffers from computational complexity in large datasets
while -means clustering is efficient but designed to identify homogeneous
spherically-shaped clusters. We present a hybrid non-parametric clustering
approach that amalgamates the two methods to identify general-shaped clusters
and that can be applied to larger datasets. Specifically, we first partition
the dataset into spherical groups using -means. We next merge these groups
using hierarchical methods with a data-driven distance measure as a stopping
criterion. Our proposal has the potential to reveal groups with general shapes
and structure in a dataset. We demonstrate good performance on several
simulated and real datasets.Comment: 16 pages, 1 table, 9 figures; accepted for publication in Sta
Volume-reflecting dielectric heat shield
White, volume-reflecting dielectric material absorbs essentially none of the incident radiant energy, and continues to reflect even though in severe environment its surface is melted and is being vaporized. Process of overall reflectance in dielectric material, involving internal refractions and reflections, is similar to process of reflection in paints
Boundary to Constructive Solid Geometry Mappings: a Focus on 2-D Issues
The problem of converting boundary representation (B-rep) to constructive solid geometry representation (CSG-rep) (and vice versa) is discussed in two phases. The first phase entails finding a CSG-rep that defines the region bounded by a polygonal profile curve. The second phase utilizes the results of the first phase to find a CSG-rep for many non-polygonal profile curves. A mathematically concise representation of a region bounded by a polygonal is presented. Namely, any polygonal region bounded by an n sided polygon may be represented by a binary tree which has at most n planar halfspaces as leaves. A structure for this representation and an algorithm for calculating is discussed
High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling
High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm
Near Infrared Spectroscopy of Young Brown Dwarfs in Upper Scorpius
Spectroscopic follow-up is a pre-requisite for studies of the formation and
early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared
spectroscopy of 30 candidate members of the young Upper Scorpius association,
selected from our previous survey work. All 24 high confidence members are
confirmed as young very low mass objects with spectral types from M5 to L1,
15-20 of them are likely brown dwarfs. This high yield confirms that brown
dwarfs in Upper Scorpius can be identified from photometry and proper motions
alone, with negligible contamination from field objects (<4%). Out of the 6
candidates with lower confidence, 5 might still be young very low mass members
of Upper Scorpius, according to our spectroscopy. We demonstrate that some very
low mass class II objects exhibit radically different near infrared (0.6 -
2.5micron) spectra from class III objects, with strong excess emission
increasing towards longer wavelengths and partially filled in features at
wavelengths shorter than 1.25micron. These characteristics can obscure the
contribution of the photosphere within such spectra. Therefore, we caution that
near infrared derived spectral types for objects with discs may be unreliable.
Furthermore, we show that the same characteristics can be seen to some extent
in all class II and even a significant fraction of class III objects (~40%),
indicating that some of them are still surrounded by traces of dust and gas.
Based on our spectra, we select a sample of objects with spectral types of M5
to L1, whose near-infrared emission represents the photosphere only. We
recommend the use of these objects as spectroscopic templates for young brown
dwarfs in the future.Comment: 12 pages, 9 figures, Accepted in MNRA
Folded traveling wave maser structure Patent
Design of folded traveling wave maser structur
Measurement and Compensation of Horizontal Crabbing at the Cornell Electron Storage Ring Test Accelerator
In storage rings, horizontal dispersion in the rf cavities introduces
horizontal-longitudinal (xz) coupling, contributing to beam tilt in the xz
plane. This coupling can be characterized by a "crabbing" dispersion term
{\zeta}a that appears in the normal mode decomposition of the 1-turn transfer
matrix. {\zeta}a is proportional to the rf cavity voltage and the horizontal
dispersion in the cavity. We report experiments at the Cornell Electron Storage
Ring Test Accelerator (CesrTA) where xz coupling was explored using three
lattices with distinct crabbing properties. We characterize the xz coupling for
each case by measuring the horizontal projection of the beam with a beam size
monitor. The three lattice configurations correspond to a) 16 mrad xz tilt at
the beam size monitor source point, b) compensation of the {\zeta}a introduced
by one of two pairs of RF cavities with the second, and c) zero dispersion in
RF cavities, eliminating {\zeta}a entirely. Additionally, intrabeam scattering
(IBS) is evident in our measurements of beam size vs. rf voltage.Comment: 5 figures, 10 page
Advanced propellant management system for spacecraft propulsion systems. Phase 1 - Survey study and evaluation
Apollo spacecraft propulsion system propellant managemen
Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current)
- …