39,731 research outputs found

    Elucidating the Correlation of the Quasar \ion{Fe}{2}/\ion{Mg}{2} Ratio with Redshift

    Full text link
    Interpretation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios from quasars has a major cosmological motivation. Both Fe and Mg are produced by short-lived massive stars. In addition, Fe is produced by accreting white dwarf supernovae somewhat after star formation begins. Therefore, we expect that the Fe/Mg ratio will gradually decrease with redshift. We have used data from the Sloan Digital Sky Survey to explore the dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio on redshift and on luminosity in the redshift range of 0.75<z<2.200.75< z< 2.20, and we have used predictions from our 830-level model for the \ion{Fe}{2} atom in photoionization calculations to interpret our findings. We have split the quasars into several groups based upon the value of their \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios, and then checked to see how the fraction of quasars in each group varies with the increase of redshift. We next examined the luminosity dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio, and we found that beyond a threshold of \ion{Fe}{2}(UV)/\ion{Mg}{2} =~ 5, and M2500<25magM_{2500} < -25\rm mag, the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio increases with luminosity, as predicted by our model. We interpret our observed variation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio with redshift as a result of the correlation of redshift with luminosity in a magnitude limited quasar sample.Comment: ApJL accepte

    Stability of the Submillimeter Brightness of the Atmosphere Above Mauna Kea, Chajnantor and the South Pole

    Full text link
    The summit of Mauna Kea in Hawaii, the area near Cerro Chajnantor in Chile, and the South Pole are sites of large millimeter or submillimeter wavelength telescopes. We have placed 860 GHz sky brightness monitors at all three sites and present a comparative study of the measured submillimeter brightness due to atmospheric thermal emission. We report the stability of that quantity at each site.Comment: 6 figure

    Design of aircraft turbine fan drive gear transmission system

    Get PDF
    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei: I. Comparing the Photoionization and Reverberation Techniques

    Full text link
    The masses and emission-line region sizes of Active Galactic Nuclei (AGNs) can be measured by ``reverberation-mapping'' (measuring the lag of the emission-line luminosity after changes in the continuum). We use tis technique to calibrate similar size and mass estimates made by photoionization models of the AGN line-emitting regions. We compile a sample of 19 AGNs with reliable reverberation and spectroscopy data, twice the number available previously. The data provide strong evidence that the BLR size and the emission-line width measure directly the central mass. Two methods are used to estimate the distance of the broad emission-line region (BLR) from the ionizing source: the photoionization method (available for many AGNs but has large intrinsic uncertainties), and the reverberation method (gives very reliable distances, but available for only a few objects). The distance estimate is combined with the velocity dispersion, derived from the broad Hb line profile, to estimate the virial mass. Comparing the central masses calculated with the reverberation method to those calculated using a photoionization model, we find a highly significant, nearly linear correlation. This provides a calibration of the photoionization method on the objects with presently available reverberation data, which should enable mass estimates for all AGNs with measured Hb line width. Comparing the BLR sizes given by the two methods also enables us to estimate the ionizing EUV luminosity which is directly unobservable. We find it to be typically ten times the visible (monochromatic luminosity at 5100A). The inferred Eddington ratio of the individual objects in our sample are 0.001-0.03 (visible luminosity) and 0.01-0.3 (ionizing luminosity).Comment: 27 pages Latex, 8 figures. Accepted for publication in the Astrophysical Journa

    Structural modeling and functional analysis of the essential ribosomal processing protease Prp from Staphylococcus aureus

    Get PDF
    In Firmicutes and related bacteria, ribosomal large subunit protein L27 is encoded with a conserved N-terminal extension that is removed to expose residues critical for ribosome function. Bacteria encoding L27 with this N-terminal extension also encode a sequence-specific cysteine protease, Prp, which carries out this cleavage. In this work, we demonstrate that L27 variants with an un-cleavable N-terminal extension, or lacking the extension (pre-cleaved), are unable to complement an L27 deletion in Staphylococcus aureus. This indicates that N-terminal processing of L27 is not only essential but possibly has a regulatory role. Prp represents a new clade of previously uncharacterized cysteine proteases, and the dependence of S. aureus on L27 cleavage by Prp validates the enzyme as a target for potential antibiotic development. To better understand the mechanism of Prp activity, we analyzed Prp enzyme kinetics and substrate preference using a fluorogenic peptide cleavage assay. Molecular modeling and site-directed mutagenesis implicate several residues around the active site in catalysis and substrate binding, and support a structural model in which rearrangement of a flexible loop upon binding of the correct peptide substrate is required for the active site to assume the proper conformation. These findings lay the foundation for the development of antimicrobials that target this novel, essential pathway

    On the soft X-ray spectrum of cooling flows

    Get PDF
    Strong evidence for cooling flows has been found in low resolution X-ray imaging and spectra of many clusters of galaxies. However high resolution X-ray spectra of several clusters from the Reflection Grating Spectrometer (RGS) on XMM-Newton now show a soft X-ray spectrum inconsistent with a simple cooling flow. The main problem is a lack of the emission lines expected from gas cooling below 1--2 keV. Lines from gas at about 2--3 keV are observed, even in a high temperature cluster such as A 1835, indicating that gas is cooling down to about 2--3 keV, but is not found at lower temperatures. Here we discuss several solutions to the problem; heating, mixing, differential absorption and inhomogeneous metallicity. Continuous or sporadic heating creates further problems, including the targetting of the heat at the cooler gas and also the high total energy required. So far there is no clear observational evidence for widespread heating, or shocks, in cluster cores, except in radio lobes which occupy only part of the volume. The implied ages of cooling flows are short, at about 1 Gyr. Mixing. or absorption, of the cooling gas are other possibilities. Alternatively, if the metals in the intracluster medium are not uniformly spread but are clumped, then little line emission is expected from the gas cooling below 1 keV. The low metallicity part cools without line emission whereas the strengths of the soft X-ray lines from the metal-rich gas depend on the mass fraction of that gas and not on the abundance, since soft X-ray line emission dominates the cooling function below 2 keV.Comment: 5 pages, with 2 figures, submitted to MNRA

    An absorption spectrum amplifier for determining gas composition

    Get PDF
    Compositions of gas samples are frequently studied by laser absorption spectroscopy. Sensitivity is improved by two orders of magnitude when absorption cell is placed inside an organic-dye laser cavity

    A Variational Approach for Minimizing Lennard-Jones Energies

    Full text link
    A variational method for computing conformational properties of molecules with Lennard-Jones potentials for the monomer-monomer interactions is presented. The approach is tailored to deal with angular degrees of freedom, {\it rotors}, and consists in the iterative solution of a set of deterministic equations with annealing in temperature. The singular short-distance behaviour of the Lennard-Jones potential is adiabatically switched on in order to obtain stable convergence. As testbeds for the approach two distinct ensembles of molecules are used, characterized by a roughly dense-packed ore a more elongated ground state. For the latter, problems are generated from natural frequencies of occurrence of amino acids and phenomenologically determined potential parameters; they seem to represent less disorder than was previously assumed in synthetic protein studies. For the dense-packed problems in particular, the variational algorithm clearly outperforms a gradient descent method in terms of minimal energies. Although it cannot compete with a careful simulating annealing algorithm, the variational approach requires only a tiny fraction of the computer time. Issues and results when applying the method to polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil
    corecore