21 research outputs found

    Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles

    Get PDF
    Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein, the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6- dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity towards Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice, the animals elicited a high titer and high avidity anti-PspA antibody response. Together, these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles

    Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    Get PDF
    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens

    Impact of Hydrophobic Chain Composition on Amphiphilic Macromolecule Antiatherogenic Bioactivity

    Get PDF
    Amphiphilic macromolecules (AMs) composed of sugar backbones modified with branched aliphatic chains and a poly­(ethylene glycol) (PEG) tail can inhibit macrophage uptake of oxidized low-density lipoproteins (oxLDL), a major event underlying atherosclerosis development. Previous studies indicate that AM hydrophobic domains influence this bioactivity through interacting with macrophage scavenger receptors, which can contain basic and/or hydrophobic residues within their binding pockets. In this study, we compare two classes of AMs to investigate their ability to promote athero-protective potency via hydrogen-bonding or hydrophobic interactions with scavenger receptors. A series of ether-AMs, containing methoxy-terminated aliphatic arms capable of hydrogen-bonding, was synthesized. Compared to analogous AMs containing no ether moieties (alkyl-AMs), ether-AMs showed improved cytotoxicity profiles. Increasing AM hydrophobicity via incorporation of longer and/or alkyl-terminated hydrophobic chains yielded macromolecules with enhanced oxLDL uptake inhibition. These findings indicate that hydrophobic interactions and the length of AM aliphatic arms more significantly influence AM bioactivity than hydrogen-bonding

    Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles

    Get PDF
    Pneumococcal surface protein A (PspA) is a choline-binding protein which is a virulence factor found on the surface of all Streptococcus pneumoniae strains. Vaccination with PspA has been shown to be protective against a lethal challenge with S. pneumoniae, making it a promising immunogen for use in vaccines. Herein, the design of a PspA-based subunit vaccine using polyanhydride nanoparticles as a delivery platform is described. Nanoparticles based on sebacic acid (SA), 1,6-bis-(p-carboxyphenoxy)hexane (CPH) and 1,8-bis-(p-carboxyphenoxy)-3,6- dioxaoctane (CPTEG), specifically 50:50 CPTEG:CPH and 20:80 CPH:SA, were used to encapsulate and release PspA. The protein released from the nanoparticle formulations retained its primary and secondary structure as well as its antigenicity. The released PspA was also biologically functional based on its ability to bind to apolactoferrin and prevent its bactericidal activity towards Escherichia coli. When the PspA nanoparticle formulations were administered subcutaneously to mice, the animals elicited a high titer and high avidity anti-PspA antibody response. Together, these studies provide a framework for the rational design of a vaccine against S. pneumoniae based on polyanhydride nanoparticles
    corecore