6 research outputs found

    Socioeconomic profile of diabetic patients with and without foot problems

    Get PDF
    Introduction: To identify the differences in a socioeconomic profile between two cohorts of diabetic patients – one with diabetic foot problems and another without diabetic foot problems. Materials and methods: The cohort with diabetic foot problems (including cellulitis, abscess, osteomyelitis, septic arthritis, gangrene, ulcers, or Charcot joint disease) consisted of 122 diabetic patients, while the other cohort without foot problems consisted of 112 diabetic patients. Both were seen at the National University Hospital from January to April 2007. A detailed protocol was designed and the factors studied included patient profile, average monthly household income, education, compliance to diabetic medication, attendance at clinics for diabetic treatment, exercise, smoking, alcohol consumption, gender, and glycosylated haemoglobin (HbA1C) level. These were studied for significant differences using univariate and stepwise multivariate logistic regression analysis. Results: With multivariate analysis, Malay ethnicity (p<0.001), education of up to secondary school only (p=0.021), low average monthly household income of less than SGD $2,000 (p=0.030), lack of exercise (at least once a week, p=0.04), and elevated HbA1C level (>7.0%; p=0.015) were found to be significantly higher in the cohort with diabetic foot problems than the cohort without. Conclusions: There are significant differences in the socioeconomic factors between diabetic patients with diabetic foot problems and those without

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

    No full text
    High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future

    Antihypertensive Drugs: Clinical Pharmacology and Therapeutic Use

    No full text
    corecore