12 research outputs found

    Regulation of P-Glycoprotein in Renal Proximal Tubule Epithelial Cells by LPS and TNF-α

    Get PDF
    During endotoxemia, the ATP-dependent drug efflux pump P-glycoprotein (Abcb1/P-gp) is upregulated in kidney proximal tubule epithelial cells. The signaling pathway through which lipopolysaccharide (LPS) or tumor necrosis factor-α (TNF-α) regulates P-gp expression and activity was investigated further in the present study. Exposure of rat kidney proximal tubule cells to TNF-α alone or TNF-α and LPS increased P-gp gene and protein expression levels and efflux activity, suggesting de novo P-gp synthesis. Upon exposure to TNF-α in combination with LPS, P-gp activity in renal proximal tubule cells is increased under influence of nitric oxide (NO) produced by inducible NO synthase. Upon exposure to TNF-α alone, P-gp upregulation seems to involve TLR4 activation and nuclear factor kappaB (NF-κB) translocation, a pathway that is likely independent of NO. These findings indicate that at least two pathways regulate P-gp expression in the kidney during endotoxemia

    The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway

    Get PDF
    In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway, also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth

    Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia

    No full text
    BACKGROUND: Kidney disease modeling and assessment of drug-induced kidney injury can be advanced using three-dimensional (3D) microfluidic models that recapitulate in vivo characteristics. Fluid shear stress (FSS) has been depicted as main modulator improving in vitro physiology in proximal tubule epithelial cells (PTECs). We aimed to elucidate the role of FSS and primary cilia on transport activity and morphology in PTECs. METHODS: Human conditionally immortalized PTEC (ciPTEC-parent) was cultured in a microfluidic 3D device, the OrganoPlate, under a physiological peak FSS of 2.0 dyne/cm2 or low peak FSS of 0.5 dyne/cm2. Upon a 9-day exposure to FSS, albumin-FITC uptake, activity of P-glycoprotein (P-gp) and multidrug resistance-associated proteins 2/4 (MRP2/4), cytotoxicity and cell morphology were determined. RESULTS: A primary cilium knock-out cell model, ciPTEC-KIF3α-/-, was successfully established via CRISPR-Cas9 genome editing. Under physiological peak FSS, albumin-FITC uptake (p = .04) and P-gp efflux (p = .002) were increased as compared to low FSS. Remarkably, a higher albumin-FITC uptake (p = .03) and similar trends in activity of P-gp and MRP2/4 were observed in ciPTEC-KIF3α-/-. FSS induced cell elongation corresponding with the direction of flow in both cell models, but had no effect on cyclosporine A-induced cytotoxicity. CONCLUSIONS: FSS increased albumin uptake, P-gp efflux and cell elongation, but this was not attributed to a mechanosensitive mechanism related to primary cilia in PTECs, but likely to microvilli present at the apical membrane. GENERAL SIGNIFICANCE: FSS-induced improvements in biological characteristics and activity in PTECs was not mediated through a primary cilium-related mechanism

    Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia

    Get PDF
    BACKGROUND: Kidney disease modeling and assessment of drug-induced kidney injury can be advanced using three-dimensional (3D) microfluidic models that recapitulate in vivo characteristics. Fluid shear stress (FSS) has been depicted as main modulator improving in vitro physiology in proximal tubule epithelial cells (PTECs). We aimed to elucidate the role of FSS and primary cilia on transport activity and morphology in PTECs. METHODS: Human conditionally immortalized PTEC (ciPTEC-parent) was cultured in a microfluidic 3D device, the OrganoPlate, under a physiological peak FSS of 2.0 dyne/cm2 or low peak FSS of 0.5 dyne/cm2. Upon a 9-day exposure to FSS, albumin-FITC uptake, activity of P-glycoprotein (P-gp) and multidrug resistance-associated proteins 2/4 (MRP2/4), cytotoxicity and cell morphology were determined. RESULTS: A primary cilium knock-out cell model, ciPTEC-KIF3α-/-, was successfully established via CRISPR-Cas9 genome editing. Under physiological peak FSS, albumin-FITC uptake (p = .04) and P-gp efflux (p = .002) were increased as compared to low FSS. Remarkably, a higher albumin-FITC uptake (p = .03) and similar trends in activity of P-gp and MRP2/4 were observed in ciPTEC-KIF3α-/-. FSS induced cell elongation corresponding with the direction of flow in both cell models, but had no effect on cyclosporine A-induced cytotoxicity. CONCLUSIONS: FSS increased albumin uptake, P-gp efflux and cell elongation, but this was not attributed to a mechanosensitive mechanism related to primary cilia in PTECs, but likely to microvilli present at the apical membrane. GENERAL SIGNIFICANCE: FSS-induced improvements in biological characteristics and activity in PTECs was not mediated through a primary cilium-related mechanism

    A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity

    No full text
    Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a more complete human cell model suitable for screening of drug-related interactions and nephrotoxicity. In addition to endogenously expressed renal organic cation transporters and efflux transporters, conditionally immortalized proximal tubule epithelial cells (ciPTEC) were completed by transduction of cells with the organic anion transporter (OAT) 1 or OAT3. Fluorescence-activated cell sorting upon exposure to the OAT substrate fluorescein successfully enriched transduced cells. A panel of organic anions was screened for drug-interactions in ciPTEC-OAT1 and ciPTEC-OAT3. The cytotoxic response to the drug-interactions with antivirals was further examined by cell viability assays. Upon subcloning, concentration-dependent fluorescein uptake was found with a higher affinity for ciPTEC-OAT1 (Km = 0.8 ± 0.1 μM) than ciPTEC-OAT3 (Km = 3.7 ± 0.5 μM). Co-exposure to known OAT1 and/or OAT3 substrates (viz. para-aminohippurate, estrone sulfate, probenecid, furosemide, diclofenac, and cimetidine) in cultures spanning 29 passage numbers revealed relevant inhibitory potencies, confirming the robustness of our model for drug-drug interactions studies. Functional OAT1 was directly responsible for cytotoxicity of adefovir, cidofovir, and tenofovir, while a drug interaction with zidovudine was not associated with decreased cell viability. Our data demonstrate that human-derived ciPTEC-OAT1 and ciPTEC-OAT3 are promising platforms for highly predictive drug screening during early phases of drug development

    A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity

    No full text
    Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a more complete human cell model suitable for screening of drug-related interactions and nephrotoxicity. In addition to endogenously expressed renal organic cation transporters and efflux transporters, conditionally immortalized proximal tubule epithelial cells (ciPTEC) were completed by transduction of cells with the organic anion transporter (OAT) 1 or OAT3. Fluorescence-activated cell sorting upon exposure to the OAT substrate fluorescein successfully enriched transduced cells. A panel of organic anions was screened for drug-interactions in ciPTEC-OAT1 and ciPTEC-OAT3. The cytotoxic response to the drug-interactions with antivirals was further examined by cell viability assays. Upon subcloning, concentration-dependent fluorescein uptake was found with a higher affinity for ciPTEC-OAT1 (Km = 0.8 ± 0.1 μM) than ciPTEC-OAT3 (Km = 3.7 ± 0.5 μM). Co-exposure to known OAT1 and/or OAT3 substrates (viz. para-aminohippurate, estrone sulfate, probenecid, furosemide, diclofenac, and cimetidine) in cultures spanning 29 passage numbers revealed relevant inhibitory potencies, confirming the robustness of our model for drug-drug interactions studies. Functional OAT1 was directly responsible for cytotoxicity of adefovir, cidofovir, and tenofovir, while a drug interaction with zidovudine was not associated with decreased cell viability. Our data demonstrate that human-derived ciPTEC-OAT1 and ciPTEC-OAT3 are promising platforms for highly predictive drug screening during early phases of drug development
    corecore