17 research outputs found

    Artificial Gravity Partially Protects Space-Induced Neurological Deficits in Drosophila Melanogaster

    Get PDF
    Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFmg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFmg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multiomics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFmg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFmg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFmg brains, with pronounced phenotypes in SFmg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight

    Simulating High-Dimensional Multivariate Data using the bigsimr R Package

    Full text link
    It is critical to accurately simulate data when employing Monte Carlo techniques and evaluating statistical methodology. Measurements are often correlated and high dimensional in this era of big data, such as data obtained in high-throughput biomedical experiments. Due to the computational complexity and a lack of user-friendly software available to simulate these massive multivariate constructions, researchers resort to simulation designs that posit independence or perform arbitrary data transformations. To close this gap, we developed the Bigsimr Julia package with R and Python interfaces. This paper focuses on the R interface. These packages empower high-dimensional random vector simulation with arbitrary marginal distributions and dependency via a Pearson, Spearman, or Kendall correlation matrix. bigsimr contains high-performance features, including multi-core and graphical-processing-unit-accelerated algorithms to estimate correlation and compute the nearest correlation matrix. Monte Carlo studies quantify the accuracy and scalability of our approach, up to d=10,000d=10,000. We describe example workflows and apply to a high-dimensional data set -- RNA-sequencing data obtained from breast cancer tumor samples.Comment: 22 pages, 10 figures, https://cran.r-project.org/web/packages/bigsimr/index.htm

    Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster

    Get PDF
    Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight

    Modeling Human Lung Cells Exposure to Wildfire Uncovers Aberrant lncRNAs Signature

    Get PDF
    Emissions generated by wildfires are a growing threat to human health and are characterized by a unique chemical composition that is tightly dependent on geographic factors such as fuel type. Long noncoding RNAs (lncRNAs) are a class of RNA molecules proven to be critical to many biological processes, and their condition-specific expression patterns are emerging as prominent prognostic and diagnostic biomarkers for human disease. We utilized a new air-liquid interface (ALI) direct exposure system that we designed and validated in house to expose immortalized human tracheobronchial epithelial cells (AALE) to two unique wildfire smokes representative of geographic regions (Sierra Forest and Great Basin). We conducted an RNAseq analysis on the exposed cell cultures and proved through both principal component and differential expression analysis that each smoke has a unique effect on the LncRNA expression profiles of the exposed cells when compared to the control samples. Our study proves that there is a link between the geographic origin of wildfire smoke and the resulting LncRNA expression profile in exposed lung cells and also serves as a proof of concept for the in-house designed ALI exposure system. Our study serves as an introduction to the scientific community of how unique expression patterns of LncRNAs in patients with wildfire smoke-related disease can be utilized as prognostic and diagnostic tools, as the current roles of LncRNA expression profiles in wildfire smoke-related disease, other than this study, are completely uncharted

    petal: Co-expression network modelling in R

    No full text
    Networks provide effective models to study complex biological systems, such as gene and protein interaction networks. With the advent of new sequencing technologies, many life scientists are grasping for user-friendly methods and tools to examine biological components at the whole-systems level. Gene co-expression network analysis approaches are frequently used to successfully associate genes with biological processes and demonstrate great potential to gain further insights into the functionality of genes, thus becoming a standard approach in Systems Biology. Here the objective is to construct biologically meaningful and statistically strong co-expression networks, the identification of research dependent subnetworks, and the presentation of self-contained results. Results: We introduce petal, a novel approach to generate gene co-expression network models based on experimental gene expression measures. petal focuses on statistical, mathematical, and biological characteristics of both, input data and output network models. Often over-looked issues of current co-expression analysis tools include the assumption of data normality, which is seldom the case for hight-throughput expression data obtained from RNA-seq technologies. petal does not assume data normality, making it a statistically appropriate method for RNA-seq data. Also, network models are rarely tested for their known typical architecture: scale-free and small-world. petal explicitly constructs networks based on both these characteristics, thereby generating biologically meaningful models. Furthermore, many network analysis tools require a number of user-defined input variables, these often require tuning and/or an understanding of the underlying algorithm||petal requires no user input other than experimental data. This allows for reproducible results, and simplifies the use of petal. Lastly, this approach is specifically designed for very large high-throughput datasets||this way, petal's network models represent as much of the entire system as possible to provide a whole-system approach. Conclusion: petal is a novel tool for generating co-expression network models of whole-genomics experiments. It is implemented in R and available as a library. Its application to several whole-genome experiments has generated novel meaningful results and has lead the way to new testing hypothesizes for further biological investigation

    Additional file 2 of petal: Co-expression network modelling in R

    No full text
    petal’s output file from its genes of interest analysis. Genes of interests are listed with their corresponding cluster coefficient and degree, the number of maximal cliques within the gene of interest subnetwork is stated and each maximal clique’s members are provided with the associated vicinity network’s name, lastly a summary table of the vicinity networks is given. The summary table includes the name of the vicinity network (e.g. VN1, VN2), the number of nodes within the particular vicinity network (VNsize), the number of genes of interest within the vicinity network (GoInum), and its density. (TXT 196 kb

    Additional file 1 of petal: Co-expression network modelling in R

    No full text
    petal’s Histogram and Q-Q plot of the Mountain Pine Beetle’s transformed expression data. (PDF 271 kb

    A transcriptomic comparison of late-ripening Cabernet Sauvignon berry skins from Bordeaux and Reno

    No full text
    Oral presentation. 12th International Conference on Grapevine Breeding and Genetics, 2018 Jul 15-20, Bordeau
    corecore