77 research outputs found
Choroidal Proteins Involved in Cerebrospinal Fluid Production may be Potential Drug Targets for Alzheimer’s Disease Therapy
Alzheimer’s disease is known to be the most common form of dementia in the elderly. It is clinically characterized by impairment of cognitive functions, as well as changes in personality, behavioral disturbances and an impaired ability to perform activities of daily living. To date, there are no effective ways to cure or reverse the disease. Genetic studies of early-onset familial Alzheimer’s disease cases revealed causative mutations in the genes encoding β-amyloid precursor protein and the γ-secretase-complex components presenilin-1 and presenilin-2, supporting an important role of β-amyloid in the pathogenesis of Alzheimer’s disease. Compromised function of the choroid plexus and defective cerebrospinal fluid production and turnover, with diminished clearance of β-amyloid, may play an important role in late-onset forms of Alzheimer’s disease. If reduced cerebrospinal fluid turnover is a risk factor for Alzheimer’s disease, then therapeutic strategies to improve cerebrospinal fluid flow are reasonable. However, the role of deficient cerebrospinal fluid dynamics in Alzheimer’s disease and the relevance of choroidal proteins as potential therapeutic targets to enhance cerebrospinal fluid turnover have received relatively little research attention. In this paper, we discuss several choroidal proteins, such as Na+-K+ ATPase, carbonic anhydrase, and aquaporin 1, that may be targets for pharmacological up-regulation of cerebrospinal fluid formation. The search for potentially beneficial drugs useful to ameliorate Alzheimer’s disease by facilitating cerebrospinal fluid production and turnover may be an important area for future research. However, the ultimate utility of such modulators in the management of Alzheimer’s disease remains to be determined. Here, we hypothesize that caffeine, the most commonly used psychoactive drug in the world, may be an attractive therapeutic candidate for treatment of Alzheimer’s disease since long-term caffeine consumption may augment cerebrospinal fluid production. Other potential mechanisms of cognitive protection by caffeine have been suggested by recent studies
Increased Cerebrospinal Fluid Production as a Possible Mechanism Underlying Caffeine's Protective Effect against Alzheimer's Disease
Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis
A new glaucoma hypothesis:a role of glymphatic system dysfunction
In a recent review article titled "A new look at cerebrospinal fluid circulation", Brinker et al. comprehensively described novel insights from molecular and cellular biology as well as neuroimaging research, which indicate that cerebrospinal fluid (CSF) physiology is much more complex than previously believed. The glymphatic system is a recently defined brain-wide paravascular pathway for CSF and interstitial fluid exchange that facilitates efficient clearance of interstitial solutes, including amyloid-beta, from the brain. Although further studies are needed to substantiate the functional significance of the glymphatic concept, one implication is that glymphatic pathway dysfunction may contribute to the deficient amyloid-beta clearance in Alzheimer's disease. In this paper, we review several lines of evidence suggesting that the glymphatic system may also have potential clinical relevance for the understanding of glaucoma. As a clinically acceptable MRI-based approach to evaluate glymphatic pathway function in humans has recently been developed, a unique opportunity now exists to investigate whether suppression of the glymphatic system contributes to the development of glaucoma. The observation of a dysfunctional glymphatic system in patients with glaucoma would provide support for the hypothesis recently proposed by our group that CSF circulatory dysfunction may play a contributory role in the pathogenesis of glaucomatous damage. This would suggest a new hypothesis for glaucoma, which, just like Alzheimer's disease, might be considered then as an imbalance between production and clearance of neurotoxins, including amyloid-beta
More advanced Alzheimer's disease may be associated with a decrease in cerebrospinal fluid pressure
In a recent article, elevated cerebrospinal fluid pressure (CSFP) consistent with very early normal pressure hydrocephalus (NPH), was found in a small subset of Alzheimer's disease (AD) patients (possible AD-NPH hybrids) enrolled in a clinical trial for chronic low-flow cerebrospinal fluid drainage. Also in the same study, was another interesting finding that merits further discussion: a substantial proportion of AD patients had very low CSFP. Based on the characteristics of these subjects, we hypothesize that more advanced AD may be associated with a decrease in CSFP. Reduced CSFP among a group of AD patients could provide a clue towards a better understanding of the high rate of comorbidity reported between AD and glaucoma since it has been shown that mean CSFP is lower in subjects with primary open-angle glaucoma. This could result in an abnormally high trans-lamina cribrosa pressure difference and lead to glaucomatous damage
- …