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October 30, 2019 

 

 

Dear Editor, 

 

The retinal nerve fiber layer (RNFL), the innermost layer of the retina, is comprised of 

unmyelinated axons originating from the retinal ganglion cells (RGCs) that converge to the 

optic disc, cross the lamina cribrosa at the optic nerve head, and form the optic nerve [1]. In a 

previous article published in Clinical Neurology and Neurosurgery, Kesler et al. [2], using 

optical coherence tomography (OCT), demonstrated a significant thinning of the RNFL both 

in patients with mild cognitive impairment and in those with Alzheimer’s disease (AD) 

compared with control subjects. These findings have been confirmed by other studies [3], and 

it seems that the RNFL loss in AD patients may be localized preferentially to the superior and 

inferior quadrants, mimicking the pattern described in glaucoma [1]. Interestingly, RNFL 

thinning has also been demonstrated in other neurodegenerative disorders such as Parkinson’s 

disease, Huntington’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis 

[1,4,5]. Such neurodegenerative proteinopathies are characterized by the accumulation of 

aberrantly processed and misfolded proteins, such as beta-amyloid (Aβ), tau, alpha-synuclein, 

transactive response DNA-binding protein 43 and huntingtin, that lose their physiological 

roles, aggregate and acquire neurotoxic properties [6]. Defective protein clearance plays a 

crucial role in their accumulation and spread [6].   

The frequent and consistent finding of RNFL thinning in several neurodegenerative diseases 

emphasizes the close relationship between this retinal layer and the brain. Embryologically, 

the retina and optic nerve extend from the diencephalon, and share many features with the 

brain in terms of structural and pathogenic pathways [7,8]. Therefore, pathological changes in 

the retina and optic nerve may shed light on the mechanisms underlying neurodegenerative 
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diseases. On the basis of the evidence described below, we propose that RNFL thinning in 

neurodegenerative disorders, especially those associated with protein accumulation, may be 

explained, at least in part, by the increasing role attributed to the glymphatic system in the 

pathogenesis of these diseases.    

In 2012, a team of researchers headed by Iliff and Nedergaard [9] demonstrated the existence 

of a brain-wide paravascular pathway along which a large proportion of subarachnoid 

cerebrospinal fluid (CSF) recirculates through the brain parenchyma, facilitating the clearance 

of interstitial solutes, including Aβ, from the brain. Within this so-called “glymphatic 

system”, CSF enters the brain along para-arterial channels to exchange with interstitial fluid 

(ISF), which is in turn cleared from the brain along paravenous pathways [9]. Glymphatic 

pathway function is mediated by aquaporin-4 (AQP4) water channels, which are localized to 

perivascular astrocytic endfeet ensheathing the cerebral vasculature [9]. AQP4 gene deletion 

in mice has been shown to result in markedly impaired Aβ clearance [9]. Glymphatic activity 

decreases sharply during aging [10,11]. In the aging rodent brain, widespread loss of 

perivascular AQP4 polarization along the penetrating arteries accompanied the decline in 

CSF-ISF exchange [11]. Furthermore, impairment of the glymphatic system has been shown 

in animal models of AD and in AD patients [12,13]. Glymphatic system dysfunction has also 

been proposed to play a role in other neurodegenerative disorders such as Parkinson’s disease, 

Huntington’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis [6,14,15]. 

Intriguingly, a recent study revealed that dysfunctions of the glymphatic clearance are 

involved in the early pathological processes of the A53T alpha-synuclein mouse model of 

Parkinson’s disease [15]. The decrease of the glymphatic clearance was mainly due to AQP4 

mislocalization [15]. This study further demonstrated that AQP4 deletion impairs clearance of 

interstitial alpha-synuclein from the brain parenchyma [15]. 
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It should be noted, however, that several aspects of the glymphatic hypothesis are still 

controversial, including whether fluid transport in brain parenchyma is propagated by 

convective flow or diffusion [16]. The results of a recent study by Smith et al. [17] did not 

support the glymphatic clearance mechanism proposed by Iliff and colleagues in which 

transfer of solutes from CSF to ISF requires AQP4-dependent convection in brain 

parenchyma. Instead, their data suggested that fluid movement occurs exclusively via 

diffusion in the extracellular space, with a component of convective flow present only in the 

paravascular spaces [17]. In humans, intrathecal contrast agent flows deep into the brain 

parenchyma achieving distances that exceed simple diffusion, suggesting that convective flow 

is also an important driver of fluid movement within the human brain [18]. In conclusion, 

there seems to be agreement that transport in grey matter is best described by non-directional, 

parenchymal diffusion coupled to fast solute transport in the paravascular spaces [16].   

Importantly, a rapidly evolving literature also suggests the existence of an “ocular glymphatic 

system” that extends to the optic nerve and retina [19-24]. The presence of a glymphatic 

pathway in the optic nerve was first proposed in our hypothesis paper published in 2015 [19]. 

To investigate the possibility of a paravascular circulation in the human optic nerve, we 

examined cross-sections of human optic nerves by light microscopy after postmortem 

administration of India ink into the subarachnoid space of the optic nerve [21,22]. The study 

demonstrated a very striking accumulation of India ink in paravascular spaces of the optic 

nerve [21,22]. More recently, Mathieu et al. [23] provided the first evidence to support the 

existence of a glymphatic pathway in the optic nerve following tracer injection into the CSF 

of live mice. Their findings built on early research in which tracers injected into the CSF were 

found diffusely throughout the optic nerve [25-28]. These studies were conducted in rabbits, 

cats, dogs, guinea pigs, and rhesus monkeys. The route of entry was either not described or 

assumed to be free diffusion from the subarachnoid space. The findings of the study by 
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Mathieu et al. [23] indicated that CSF enters the optic nerve via spaces surrounding blood 

vessels, bordered by AQP4-positive astrocytic endfeet. Jacobsen et al. [24] very recently 

performed a magnetic resonance imaging study of human visual pathway structures following 

intrathecal administration of gadobutrol serving as a CSF tracer. CSF tracer enrichment was 

found within the optic nerve, optic chiasm, optic tract, and primary visual cortex. Based on 

their observations, the authors hypothesized the existence of a glymphatic system in the 

human visual pathway. However, as visual pathway structures lie in close proximity to the 

CSF, the authors could not rule out diffusion of gadobutrol from CSF. Mathieu et al. [29] 

further demonstrated that CSF entry into the optic nerve subarachnoid space and optic nerve 

paravascular spaces is impeded in a mouse model of glaucoma. The results of this study seem 

to support the glymphatic hypothesis of glaucoma, which was initially postulated by our 

group [19]. 

As the ocular glymphatic system may be critical for the maintenance of normal optic nerve 

and eye functioning, it is reasonable to suggest that a deficient passage of fluids through these 

pathways may induce several kinds of ocular dysfunction, such as RGC loss and RNFL 

thinning. This may be even more striking in neurodegenerative proteinopathies, in which the 

RNFL thickness may reflect the degree of neurotoxic protein burden. From this point of view, 

RNFL thinning might be of diagnostic value to detect a disturbance of CSF and glymphatic 

circulation associated with neurodegenerative diseases. Given that a possible CSF outflow 

route along the optic nerve into lymphatic vessels of the dura mater or orbit has long been 

known [29-31], a decline in this CSF lymphatic outflow might also contribute to RNFL 

thinning. Obviously, an increased protein burden may also result from several other clearance 

pathways that may be compromised in neurodegenerative disorders.  

In favor of the above hypothesis, a new study by Song et al. [32] demonstrated the importance 

of AQP4 water channels for retinal and optic nerve health. This study revealed that deletion of 
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liver X receptor β from the mouse genome resulted in loss of RGCs, reduced RNFL, and 

accumulation of Aβ in the retina, which was preceded by loss of AQP4 expression and 

microglial activation in the optic nerve. The authors concluded that the loss of RGCs was 

secondary to optic nerve degeneration and that optic neuritis in these mice was caused by loss 

of AQP4 expression. Given that the AQP4 water channel is a characteristic feature of the 

glymphatic system, we believe reduced AQP4-mediated glymphatic system clearance 

function could be one contributing factor in explaining the findings of this study.  

In conclusion, based on the above findings, we propose that RNFL thinning in 

neurodegenerative proteinopathies might serve as an ocular biomarker of glymphatic system 

dysfunction. If confirmed, non-invasive ocular imaging technologies, such as OCT, could be 

used to assess glymphatic pathway function.  

 

 

 

Sincerely yours, 

 

Peter Wostyn, MD
 

Peter Paul De Deyn, MD, PhD
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