1,011 research outputs found

    Designing a digital ecosystem for the new museum environment: the Virtual Museum of the Pacific

    Get PDF
    The Virtual Museum of the Pacific is a social media platform for a digital ecosystem, which enables a variety of user communities to engage with the Pacific Collection of the Australian Museum. The success of the system depends on facilitating the development of culturally relevant folksonomies and encouraging a conversation between online communities. In this paper we explore the relationships between stakeholders, folksonomy and taxonomy, to reveal the design strategies which inform this digital ecosystem. Our analysis defines the scope for the social tagging component of our information model and discusses how users might interact with objects (in terms of their knowledge base) and also contribute to ongoing taxonomic definitions. Given its capacity to span both collection management and community access issues, we contend that the Virtual Museum of the Pacific is a significant model for online community interaction in the contemporary museum environment

    Setting Priorities for Space Research: Opportunities and Imperatives

    Get PDF
    This report represents the first phase of a study by a task group convened by the Space Studies Board to ascertain whether it should attempt to develop a methodology for recommending priorities among the various initiatives in space research (that is, scientific activities concerned with phenomena in space or utilizing observations from space). The report argues that such priority statements by the space research community are both necessary and desirable and would contribute to the formulation and implementation of public policy. The report advocates the establishment of priorities to enhance effective management of the nation's scientific research program in space. It argues that scientific objectives and purposes should determine how and under what circumstances scientific research should be done. The report does not take a position on the controversy between advocates of manned space exploration and those who favor the exclusive use of unmanned space vehicles. Nor does the report address questions about the value or appropriateness of Space Station Freedom or proposals to establish a permanent manned Moon base or to undertake a manned mission to Mars. These issues lie beyond the charge to the task group

    Geo-Referenced, Abundance Calibrated Ocean Distribution of Chinook Salmon (Oncorhynchus tshawytscha) Stocks across the West Coast of North America

    Get PDF
    Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish

    Use of Genetic Stock Identification Data for Comparison of the Ocean Spatial Distribution, Size at Age, and Fishery Exposure of an Untagged Stock and Its Indicator: California Coastal versus Klamath River Chinook Salmon

    Get PDF
    Managing weak stocks in mixed-stock fisheries often relies on proxies derived from data-rich indicator stocks. For example, full cohort reconstruction of tagged Klamath River fall run Chinook salmon (Oncorhynchus tshawytscha) of northern California, USA, enables the use of detailed models to inform management. Information gained from this stock is also used in the management of the untagged, threatened California Coastal Chinook (CCC) salmon stock, by capping Klamath harvest rates. To evaluate use of this proxy, we used genetic stock identification (GSI) data to compare the two stocks\u27 size-at-age and ocean distribution, two key factors influencing fishery exposure. We developed methods to account for both sampling and genetic assignment uncertainty in catch estimates. We found that, in 2010, the stocks were similar in size-at-age early in the year (age-3 and age-4), but CCC fish were larger later in the year. The stocks appeared similarly distributed early in the year (2010), but more concentrated near their respective source rivers later in the year (2010 and 2011). If these results are representative, relative fishery impacts on the two stocks might scale similarly early in the year but management changes later in the year might have differing impacts on the two stocks

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Numerical study of oscillatory regimes in the Kadomtsev-Petviashvili equation

    Full text link
    The aim of this paper is the accurate numerical study of the KP equation. In particular we are concerned with the small dispersion limit of this model, where no comprehensive analytical description exists so far. To this end we first study a similar highly oscillatory regime for asymptotically small solutions, which can be described via the Davey-Stewartson system. In a second step we investigate numerically the small dispersion limit of the KP model in the case of large amplitudes. Similarities and differences to the much better studied Korteweg-de Vries situation are discussed as well as the dependence of the limit on the additional transverse coordinate.Comment: 39 pages, 36 figures (high resolution figures at http://www.mis.mpg.de/preprints/index.html
    • …
    corecore