340 research outputs found

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ

    SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells

    Get PDF
    BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue

    Softened magnetic excitations in the s = 3/2 distorted triangular antiferromagnet alpha-CaCr2O4

    Full text link
    The spin dynamics and magnetic excitations of the slightly distorted triangular s = 3/2 system alpha-CaCr2O4 are investigated by means of Raman spectroscopy and electron spin resonance (ESR) to elucidate its peculiar magnetic properties. Two-magnon excitations in circular RL symmetry show a multi-maximum structure with a dominant spectral weight at low energies. The temperature dependence of the ESR linewidth is described by a critical broadening DeltaHpp(T) ~ (T - T_N)^{-p} with the exponent p = 0.30(3) - 0.38(5) for temperatures above T_N = 42.6 K. The exponent is much smaller than that of other s = 3/2 triangular lattices. This is ascribed to soft roton-like modes, indicative of the instability of a helical 120{\deg} phase. As an origin we discuss a complex spin topology formed by four inequivalent nearest neighbor and sizable next-nearest neighbor interactions.Comment: 7 pages, 4 figure

    Discovery of Interstellar Hydrogen Fluoride

    Get PDF
    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (~ 5 sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3) 121.7219 micron line of water. The emission line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5E-6 relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ Letter

    Faint Infrared Flares from the Microquasar GRS 1915+105

    Get PDF
    We present simultaneous infrared and X-ray observations of the Galactic microquasar GRS 1915+105 using the Palomar 5-m telescope and Rossi X-ray Timing Explorer on July 10, 1998 UT. Over the course of 5 hours, we observed 6 faint infrared (IR) flares with peak amplitudes of ∼0.3−0.6\sim 0.3-0.6 mJy and durations of ∼500−600\sim 500-600 seconds. These flares are associated with X-ray soft-dip/soft-flare cycles, as opposed to the brighter IR flares associated with X-ray hard-dip/soft-flare cycles seen in August 1997 by Eikenberry et al. (1998). Interestingly, the IR flares begin {\it before} the X-ray oscillations, implying an ``outside-in'' origin of the IR/X-ray cycle. We also show that the quasi-steady IR excess in August 1997 is due to the pile-up of similar faint flares. We discuss the implications of this flaring behavior for understanding jet formation in microquasars.Comment: 10 pages, 4 figures Accepted for publication in ApJ Letter

    Presenting Symptoms in Newly Diagnosed Myeloma, Relation to Organ Damage, and Implications for Symptom-Directed Screening: A Secondary Analysis from the Tackling Early Morbidity and Mortality in Myeloma (TEAMM) Trial

    Get PDF
    Multiple myeloma (MM) patients risk diagnostic delays and irreversible organ damage. In those with newly diagnosed myeloma, we explored the presenting symptoms to identify early signals of MM and their relationships to organ damage. The symptoms were recorded in patients’ own words at diagnosis and included diagnostic time intervals. Those seen by a haematologist >6 months prior to MM diagnosis were classified as precursor disease (PD). Most (962/977) patients provided data. Back pain (38%), other pain (31%) and systemic symptoms (28%) predominated. Patients rarely complain of ‘bone pain’, simply ‘pain’. Vertebral fractures are under-recognised as pathological and are the predominant irreversible organ damage (27% of patients), impacting the performance status (PS) and associated with back pain (odds ratio (OR) 6.14 [CI 4.47–8.44]), bone disease (OR 3.71 [CI 1.88–7.32]) and age >65 years (OR 1.58 [CI 1.15–2.17]). Renal failure is less frequent and associated with gastrointestinal symptoms (OR 2.23 [CI1.28–3.91]), age >65 years (OR 2.14 [CI1.28–3.91]) and absence of back pain (OR 0.44 [CI 0.29–0.67]). Patients with known PD (n = 149) had fewer vertebral fractures (p = 0.001), fewer adverse features (p = 0.001), less decline in PS (p = 0.001) and a lower stage (p = 0.04) than 813 with de novo MM. Our data suggest subgroups suitable for trials of ‘symptom-directed’ screening: those with back pain, unexplained pain, a general decline in health or low-impact vertebral compression fractures

    Asymmetric rolling of interstitial-free steel using differential roll diameters. Part II : microstructure and annealing effects

    Full text link
    The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes

    Redox Regulation of Mitochondrial Fission Protein Drp1 by Protein Disulfide Isomerase Limits Endothelial Senescence.

    Get PDF
    Mitochondrial dynamics are tightly controlled by fusion and fission, and their dysregulation and excess reactive oxygen species (ROS) contribute to endothelial cell (EC) dysfunction. How redox signals regulate coupling between mitochondrial dynamics and endothelial (dys)function remains unknown. Here, we identify protein disulfide isomerase A1 (PDIA1) as a thiol reductase for the mitochondrial fission protein Drp1. A biotin-labeled Cys-OH trapping probe and rescue experiments reveal that PDIA1 depletion in ECs induces sulfenylation of Drp1 at Cys644, promoting mitochondrial fragmentation and ROS elevation without inducing ER stress, which drives EC senescence. Mechanistically, PDIA1 associates with Drp1 to reduce its redox status and activity. Defective wound healing and angiogenesis in diabetic or PDIA1+/- mice are restored by EC-targeted PDIA1 or the Cys oxidation-defective mutant Drp1. Thus, this study uncovers a molecular link between PDIA1 and Drp1 oxidoreduction, which maintains normal mitochondrial dynamics and limits endothelial senescence with potential translational implications for vascular diseases associated with diabetes or aging.This research was supported by NIH R01HL135584 (to M.U.-F.), NIH R21HL112293 (to M.U.-F.), NIH R01HL133613 (to T.F. and M.U.-F.), NIH R01HL116976 (to T.F. and M.U.-F.), NIH R01HL070187 (to T.F.), NIH R01HL112626 (to J.K.), Department of Veterans Affairs Merit Review Grant 2I01BX001232 (to T.F.), AHA 16GRNT31390032 (to M.U.-F.), AHA 15SDG25700406 (to S.V.), AHA 16POST27790038 (to A.D.), and NIH T32HL07829 (to R.C.). We thank Mr. Kyle Taylor at Keyence Corporation for assisting with taking images using the Keyence microscope; Dr. John O’Bryan at UIC for assisting with the BiFC assays; Dr. Leslie Poole at Wake Forest University for providing DCP-Bio1, as well as Dr. Jody Martin and the Center for Cardiovascular Research-supported Vector Core Facility at UIC for amplifying adenoviruses.S

    An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    Get PDF
    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to provide robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. The tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation
    • …
    corecore