52 research outputs found

    NikR Repressor High-Affinity Nickel Binding to the C-Terminal Domain Regulates Binding to Operator DNA

    Get PDF
    AbstractE. coli NikR repressor binds operator DNA in a nickel-dependent fashion. The pM affinity of NikR for nickel is mediated by its C-terminal 86 residues. Nickel binding induced additional secondary structure, decreased the compactness, and increased the stability of NikR. Tetramer formation by the C-terminal domain and intact NikR did not require nickel. High-affinity nickel binding decreased the NikR concentration needed to half maximally protect operator DNA from undetectable levels to 30 nM. The intracellular concentration of NikR in E. coli is high enough that saturation of the high-affinity nickel sites should lead to substantial occupancy of the nik operator. Nickel binding to a set of low-affinity NikR sites resulted in an additional large increase in operator affinity and substantially increased the size of the NikR footprint on the operator

    Reduction-cleavable desferrioxamine B pulldown system enriches Ni( ii )-superoxide dismutase from a Streptomyces proteome

    Get PDF
    Two resins with the hydroxamic acid siderophore desferrioxamine B (DFOB) immobilised as a free ligand or its Fe(iii) complex were prepared to screen the Streptomyces pilosus proteome for proteins involved in siderophore-mediated Fe(iii) uptake. The resin design included a disulfide bond to enable the release of bound proteins under mild reducing conditions. Proteomics analysis of the bound fractions did not identify proteins associated with siderophore-mediated Fe(iii) uptake, but identified nickel superoxide dismutase (NiSOD), which was enriched on the apo-DFOB-resin but not the Fe(iii)-DFOB-resin or the control resin. While DFOB is unable to sequester Fe(iii) from sites deeply buried in metalloproteins, the coordinatively unsaturated Ni(ii) ion in NiSOD is present in a surface-exposed loop region at the N-terminus, which might enable partial chelation. The results were consistent with the notion that the apo-DFOB-resin formed a ternary complex with NiSOD, which was not possible for either the coordinatively saturated Fe(iii)-DFOB-resin or the non-coordinating control resin systems. In support, ESI-TOF-MS measurements from a solution of a model Ni(ii)-SOD peptide and DFOB showed signals that correlated with a ternary Ni(ii)-SOD peptide–DFOB complex. Although any biological implications of a DFOB–NiSOD complex are unclear, the work shows that the metal coordination properties of siderophores might influence an array of metal-dependent biological processes beyond those established in iron uptake

    Automatic and Deliberate Affective Associations with Sexual Stimuli in Women with Superficial Dyspareunia

    Get PDF
    Current views suggest that in women with superficial dyspareunia the prospect of penile–vaginal intercourse automatically activates fear-related associations. The automatic activation of negative associations is assumed to interfere with the development of sexual arousal. In turn, this may further aggravate the dyspareunia-related complaints. To assess whether automatic negative associations are involved in this sexual pain disorder, women with superficial dyspareunia (n = 35) and a control group (n = 35) completed a modified pictorial Affective Simon Task (AST). Questioning the role of dysfunctional automatic associations in superficial dyspareunia, the AST indicated that symptomatic women displayed relatively positive rather than negative automatic associations with sexual stimuli. At the self-report level, however, affective associations with sex cues were significantly more negative for women with dyspareunia than for controls. This discrepancy between “reflective” and “reflexive” affective associations with sexual stimuli in women with dyspareunia points to the relevance of conscious appraisal and deliberate rather than automatic processes in the onset and maintenance of dyspareunia

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project

    Get PDF
    Current farm systems rely on the use of Plant Protection Products (PPP) to secure high productivity and control threats to the quality of the crops. However, PPP use may have considerable impacts on human health and the environment. A study protocol is presented aiming to determine the occurrence and levels of PPP residus in plants (crops), animals (livestock), humans and other non-target species (ecosystem representatives) for exposure modelling and impact assessment. To achieve this, we designed a cross-sectional study to compare conventional and organic farm systems across Europe. Environmental and biological samples were/are being/will be collected during the 2021 growing season, at 10 case study sites in Europe covering a range of climate zones and crops. An additional study site in Argentina will inform the impact of PPP use on growing soybean which is an important European protein-source in animal feed. We will study the impact of PPP mixtures using an integrated risk assessment methodology. The fate of PPP in environmental media (soil, water and air) and in the homes of farmers will be monitored. This will be complemented by biomonitoring to estimate PPP uptake by humans and farm animals (cow, goat, sheep and chicken), and by collection of samples from non-target species (earthworms, fish, aquatic and terrestrial macroinvertebrates, bats, and farm cats). We will use data on PPP residues in environmental and biological matrices to estimate exposures by modelling. These exposure estimates together with health and toxicity data will be used to predict the impact of PPP use on environment, plant, animal and human health. The outcome of this study will then be integrated with socio-economic information leading to an overall assessment used to identify transition pathways towards more sustainable plant protection and inform decision makers, practitioners and other stakeholders regarding farming practices and land use policy

    General Acid/Base Catalysis in the Active Site of Escherichia coli

    No full text
    corecore