10 research outputs found

    The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation.

    Get PDF
    In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought

    Berechnung und Auslegung von Kronenradgetrieben mit kleiner Leistung

    No full text

    Virtual Screening Identifies Novel Sulfonamide Inhibitors of <i>ecto</i>-5′-Nucleotidase

    No full text
    We aimed to identify inhibitors of <i>ecto</i>-5′-nucleotidase (<i>ecto</i>-5′-NT, CD73), a membrane-bound metallophosphoesterase that is implicated in the control of purinergic receptor signaling and a number of associated therapeutically relevant effects. Currently, only very few compounds, including ADP, its more stable analogue α,β-methylene-ADP, ATP, and anthraquinone derivatives are known to inhibit this enzyme. In the search for inhibitors with more drug-like properties, we applied a model structure-based virtual screening approach augmented by chemical similarity searching. On the basis of this analysis, 51 candidate compounds were finally selected for experimental evaluation. A total of 13 of these molecules were confirmed to have competitive inhibitory activity. The most potent inhibitor, 6-chloro-2-oxo-<i>N</i>-(4-sulfamoylphenyl)-2<i>H</i>-chromene-3-carboxylic acid amide (<b>17</b>), showed an IC<sub>50</sub> value of 1.90 μM. In contrast to the nucleotide- and anthraquinone-derived antagonists, the newly identified competitive inhibitors are uncharged at physiological pH values, possess a drug-like structure, and are structurally distinct from known active compounds
    corecore