174 research outputs found

    Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation

    Get PDF
    Aims Late acquired incomplete stent apposition (ISA) is more common after drug-eluting stent (DES) than bare metal stent (BMS) implantation and has been associated with vascular hypersensitivity and stent thrombosis (ST). We investigated the impact of incidentally discovered ISA as assessed by intravascular ultrasound (IVUS) 8 months after DES implantation on the long-term clinical outcome. Methods and results A total of 194 patients with 221 lesions were prospectively followed through 5 years. At 8 months, IVUS showed evidence of ISA among 37 patients with 39 lesions (18%) (mean ISAmax 4.7 ± 5.0 mm2), whereas no ISA was observed among 157 patients with 182 lesions. Incomplete stent apposition was more prevalent among segments treated with sirolimus-eluting (n = 103) than paclitaxel-eluting stents (n = 118) (27 vs. 9%, P = 0.001). Between IVUS investigation at the 8-month and 5-year follow-up, major adverse cardiac events occurred more frequently in patients with (18.9%, n = 7) than without ISA (7.0%, n = 11) (HR = 2.71, 95% CI: 1.05-6.96, P = 0.031). While there were no differences with respect to death, the rate of myocardial infarction was higher among patients with (13.5%, n = 5) than without ISA (1.9%, n = 3) (HR = 7.53, 95% CI: 1.79-31.6, P = 0.001). Very late ST was more common among patients with than without ISA [Academic Research Consortium-definite ST:13.5% (n = 5) vs. 0.6% (n = 1) HR = 23.2, 95% CI: 2.65-203, P < 0.001]. Conclusion In the present study, the presence of ISA as assessed by IVUS 8 months after DES implantation was associated with a higher rate of myocardial infarction and very late stent thrombosis during long-term follow-up. The prognostic impact of ISA on long-term clinical outcomes requires further investigatio

    Clathrin light chains' role in selective endocytosis influences antibody isotype switching

    Get PDF
    Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor β receptor 2 (TGFβR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the β2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin’s role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules

    Donor KIR B Genotype Improves Progression-Free Survival of Non-Hodgkin Lymphoma Patients Receiving Unrelated Donor Transplantation

    Get PDF
    Donor killer immunoglobulin-like receptor (KIR) genotypes are associated with relapse protection and survival after allotransplantation for acute myelogenous leukemia. We examined the possibility of a similar effect in a cohort of 614 non-Hodgkin lymphoma (NHL) patients receiving unrelated donor (URD) T cell-replete marrow or peripheral blood grafts. Sixty-four percent (n = 396) of donor-recipient pairs were 10/10 allele HLA matched and 26% were 9/10 allele matched. Seventy percent of donors had KIR B/x genotype; the others had KIR A/A genotype. NHL patients receiving 10/10 HLA-matched URD grafts with KIR B/x donors experienced significantly lower relapse at 5 years (26%; 95% confidence interval [CI], 21% to 32% versus 37%; 95% CI, 27% to 46%; P = .05) compared with KIR A/A donors, resulting in improved 5-year progression-free survival (PFS) (35%; 95% CI, 26% to 44% versus 22%; 95% CI, 11% to 35%; P = .007). In multivariate analysis, use of KIR B/x donors was associated with significantly reduced relapse risk (relative risk [RR], .63, P = .02) and improved PFS (RR, .71, P = .008). The relapse protection afforded by KIR B/x donors was not observed in HLA-mismatched transplantations and was not specific to any particular KIR-B gene. Selecting 10/10 HLA-matched and KIR B/x donors should benefit patients with NHL receiving URD allogeneic transplantation

    Defining KIR and HLA Class I Genotypes at Highest Resolution via High-Throughput Sequencing.

    Get PDF
    The physiological functions of natural killer (NK) cells in human immunity and reproduction depend upon diverse interactions between killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands: HLA-A, HLA-B, and HLA-C. The genomic regions containing the KIR and HLA class I genes are unlinked, structurally complex, and highly polymorphic. They are also strongly associated with a wide spectrum of diseases, including infections, autoimmune disorders, cancers, and pregnancy disorders, as well as the efficacy of transplantation and other immunotherapies. To facilitate study of these extraordinary genes, we developed a method that captures, sequences, and analyzes the 13 KIR genes and HLA-A, HLA-B, and HLA-C from genomic DNA. We also devised a bioinformatics pipeline that attributes sequencing reads to specific KIR genes, determines copy number by read depth, and calls high-resolution genotypes for each KIR gene. We validated this method by using DNA from well-characterized cell lines, comparing it to established methods of HLA and KIR genotyping, and determining KIR genotypes from 1000 Genomes sequence data. This identified 116 previously uncharacterized KIR alleles, which were all demonstrated to be authentic by sequencing from source DNA via standard methods. Analysis of just two KIR genes showed that 22% of the 1000 Genomes individuals have a previously uncharacterized allele or a structural variant. The method we describe is suited to the large-scale analyses that are needed for characterizing human populations and defining the precise HLA and KIR factors associated with disease. The methods are applicable to other highly polymorphic genes.This study was supported by U.S. National Institutes of Health grants U01 AI090905, R01 20 GM109030, R01 AI17892 and U19 AI119350. Authors Steven Norberg and Mostafa Ronaghi are 21 employees of Illumina Inc.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Elsevier

    Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation

    Get PDF
    Late acquired incomplete stent apposition (ISA) is more common after drug-eluting stent (DES) than bare metal stent (BMS) implantation and has been associated with vascular hypersensitivity and stent thrombosis (ST). We investigated the impact of incidentally discovered ISA as assessed by intravascular ultrasound (IVUS) 8 months after DES implantation on the long-term clinical outcome

    Reconstructing the Population Genetic History of the Caribbean

    Get PDF
    The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, by making use of genome-wide SNP array data, we characterize ancestral components of Caribbean populations on a sub-continental level and unveil fine-scale patterns of population structure distinguishing insular from mainland Caribbean populations as well as from other Hispanic/Latino groups. We provide genetic evidence for an inland South American origin of the Native American component in island populations and for extensive pre-Columbian gene flow across the Caribbean basin. The Caribbean-derived European component shows significant differentiation from parental Iberian populations, presumably as a result of founder effects during the colonization of the New World. Based on demographic models, we reconstruct the complex population history of the Caribbean since the onset of continental admixture. We find that insular populations are best modeled as mixtures absorbing two pulses of African migrants, coinciding with early and maximum activity stages of the transatlantic slave trade. These two pulses appear to have originated in different regions within West Africa, imprinting two distinguishable signatures in present day Afro-Caribbean genomes and shedding light on the genetic impact of the dynamics occurring during the slave trade in the Caribbean.Comment: 26 pages, 6 figures, and supporting informatio

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human killer immunoglobulin-like receptors (KIRs) play a critical role in governing the immune response to neoplastic and infectious disease. Rhesus macaques serve as important animal models for many human diseases in which KIRs are implicated; however, the study of KIR activity in this model is hindered by incomplete characterization of <it>KIR </it>genetics.</p> <p>Results</p> <p>Here we present a characterization of <it>KIR </it>genetics in rhesus macaques (<it>Macaca mulatta)</it>. We conducted a survey of <it>KIRs </it>in this species, identifying 47 novel full-length <it>KIR </it>sequences. Using this expanded sequence library to build upon previous work, we present evidence supporting the existence of 22 <it>Mamu-KIR </it>genes, providing a framework within which to describe macaque <it>KIRs</it>. We also developed a novel pyrosequencing-based technique for <it>KIR </it>genotyping. This method provides both comprehensive <it>KIR </it>genotype and frequency estimates of transcript level, with implications for the study of <it>KIRs </it>in all species.</p> <p>Conclusions</p> <p>The results of this study significantly improve our understanding of macaque <it>KIR </it>genetic organization and diversity, with implications for the study of many human diseases that use macaques as a model. The ability to obtain comprehensive KIR genotypes is of basic importance for the study of KIRs, and can easily be adapted to other species. Together these findings both advance the field of macaque KIRs and facilitate future research into the role of KIRs in human disease.</p
    corecore