124 research outputs found
The development of machine learning algorithms to decipher the biological background of major depression and its symptoms
令和6年度 京都大学化学研究所 スーパーコンピュータシステム 利用報告
The development of machine learning algorithms to decipher the biological background of major depression and its symptoms
令和4年度 京都大学化学研究所 スーパーコンピュータシステム 利用報告
The development of machine learning algorithms to decipher the biological background of major depression and its symptoms
令和5年度 京都大学化学研究所 スーパーコンピュータシステム 利用報告
The UKB envirome of depression
Major depressive disorder is a result of the complex interplay between a large number of environmental and genetic factors but the comprehensive analysis of contributing environmental factors is still an open challenge. The primary aim of this work was to create a Bayesian dependency map of environmental factors of depression, including life stress, social and lifestyle factors, using the UK Biobank data to determine direct dependencies and to characterize mediating or interacting effects of other mental health, metabolic or pain conditions. As a complementary approach, we also investigated the non-linear, synergistic multi-factorial risk of the UKB envirome on depression using deep neural network architectures. Our results showed that a surprisingly small number of core factors mediate the effects of the envirome on lifetime depression: neuroticism, current depressive symptoms, parental depression, body fat, while life stress and household income have weak direct effects. Current depressive symptom showed strong or moderate direct relationships with life stress, pain conditions, falls, age, insomnia, weight change, satisfaction, confiding in someone, exercise, sports and Townsend index. In conclusion, the majority of envirome exerts their effects in a dynamic network via transitive, interactive and synergistic relationships explaining why environmental effects may be obscured in studies which consider them individually
Downregulation of the Vitamin D Receptor Regulated Gene Set in the Hippocampus After MDMA Treatment
The active ingredient of ecstasy, ±3,4-methylenedioxymethamphetamine (MDMA), in addition to its initial reinforcing effects, induces selective and non-selective brain damage. Evidences suggest that the hippocampus (HC), a central region for cognition, may be especially vulnerable to impairments on the long-run, nevertheless, transcription factors that may precede and regulate such chronic changes remained uninvestigated in this region. In the current study, we used gene-set enrichment analysis (GSEA) to reveal possible transcription factor candidates responsible for enhanced vulnerability of HC after MDMA administration. Dark Agouti rats were intraperitoneally injected with saline or 15 mg/kg MDMA. Three weeks later HC gene expression was measured by Illumina whole-genome beadarrays and GSEA was performed with MSigDB transcription factor sets. The number of significantly altered genes on the genome level (significance < 0.001) in up/downregulated sets was also counted. MDMA upregulated one, and downregulated 13 gene sets in the HC of rats, compared to controls, including Pax4, Pitx2, FoxJ2, FoxO1, Oct1, Sp3, AP3, FoxO4, and vitamin D receptor (VDR)-regulated sets (q-value <0.05). VDR-regulated set contained the second highest number of significantly altered genes, including among others, Camk2n2, Gria3, and Grin2a. Most identified transcription factors are implicated in the response to ischemia confirming that serious hypoxia/ischemia occurs in the HC after MDMA administration, which may contribute to the selective vulnerability of this brain region. Moreover, our results also raise the possibility that vitamin D supplementation, in addition to the commonly used antioxidants, could be a potential alternative method to attenuate MDMA-induced chronic hippocampal impairments
Variability in the Effect of 5-HTTLPR on Depression in a Large European Population: The Role of Age, Symptom Profile, Type and Intensity of Life Stressors.
BACKGROUND: Although 5-HTTLPR has been shown to influence the risk of life stress-induced depression in the majority of studies, others have produced contradictory results, possibly due to weak effects and/or sample heterogeneity. METHODS: In the present study we investigated how age, type and intensity of life-stressors modulate the effect of 5-HTTLPR on depression and anxiety in a European population cohort of over 2300 subjects. Recent negative life events (RLE), childhood adversity (CHA), lifetime depression, Brief Symptoms Inventory (BSI) depression and anxiety scores were determined in each subject. Besides traditional statistical analysis we calculated Bayesian effect strength and relevance of 5-HTTLPR genotypes in specified models. RESULTS: The short (s) low expressing allele showed association with increased risk of depression related phenotypes, but all nominally significant effects would turn to non-significant after correction for multiple testing in the traditional analysis. Bayesian effect strength and relevance analysis, however, confirmed the role of 5-HTTLPR. Regarding current (BSI) and lifetime depression 5-HTTLPR-by-RLE interactions were confirmed. Main effect, with other words direct association, was supported with BSI anxiety. With more frequent RLE the prevalence or symptoms of depression increased in ss carriers. Although CHA failed to show an interaction with 5-HTTLPR, in young subjects CHA sensitized towards the depression promoting effect of even mild RLE. Furthermore, the direct association of anxiety with the s allele was driven by young (</=30) individuals. LIMITATIONS: Our study is cross-sectional and applies self-report questionnaires. CONCLUSIONS: Albeit 5-HTTLPR has only weak/moderate effects, the s allele is directly associated with anxiety and modulates development of depression in homogeneous subgroups
Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes
Interleukin-6 (IL-6) has emerged as a potent biomarker for depression as its elevated plasma levels in patients with clinical depression have been confirmed by meta-analyses. Increased plasma IL-6 concentration was associated with various psychological stress factors and physical disorders accompanied by pain. Another modulator of the IL-6 level is rs1800795, a promoter polymorphism in the IL-6 gene which is able to influence its expression rate. Therefore, we examined in a Hungarian population sample of 1053 volunteers with European origins if rs1800795 polymorphism can affect depression symptoms measured by Zung Self-rating Depression Scale (ZSDS), and Brief Symptom Inventory (BSI). We also investigated the interactions of the polymorphism with reported painful physical conditions and Recent Negative Life Events (RLE) measured by the List of Life Threatening Experiences. Rs1800795 significantly interacted with both RLE and painful condition on depressive symptoms measured by ZSDS and BSI using different heritability models, while no main effects of the polymorphism were identified. After correction for multiple testing only the rs1800795 x RLE interaction effect (recessive model) remained significant on the BSI score, while both RLE and painful conditions significantly interacted on the ZSDS. In conclusion, the functional IL-6 rs1800795 polymorphism in interaction with various stress factors increases the risk of depression and has a greater impact on symptoms measured by the ZSDS. Thus, IL-6 and other cytokines may be more relevant in the development of somatic symptoms compared to affective signs of depression, delineating a specific genotype-phenotype relationship in this heterogeneous disorder
Financial Stress Interacts With CLOCK Gene to Affect Migraine.
Previous studies suggested that both maladaptive stress response and circadian dysregulation might have a role in the background of migraine. However, effects of circadian genes on migraine have not been tested yet. In the present study, we investigated the main effect of rs10462028 of the circadian locomotor output cycles kaput (CLOCK) gene and its interaction with different stress factors on migraine. In our cross-sectional study 2,157 subjects recruited from Manchester and Budapest completed the ID-Migraine questionnaire to detect migraine type headaches (migraineID). Additional stress factors were assessed by a shortened version of the Childhood Trauma Questionnaire, the List of Threatening Experiences questionnaire, and a validated questionnaire to identify financial difficulties. Rs10462028 showed no main genetic effect on migraineID. However, chronic stress indexed by financial difficulties showed a significant interaction effect with rs10462028 (p = 0.006 in recessive model) on migraineID. This result remained significant after correction for lifetime bipolar and unipolar depression and was replicated in both subsamples, although only a trend effect was reached after Bonferroni-correction, which is the strictest correction not considering interdependences. Childhood adversity (CHA) and Recent negative life events (RLE) showed no significant gene × stress interaction with rs10462028. In addition, in silico analysis demonstrated that the genetic region tagged by rs10462028 alters the binding of several miRNAs. Our exploratory study suggests that variations in the CLOCK gene, with moderating effect on gene function through miRNA binding, in interaction with financial difficulties might influence the risk of migraine-type headaches. Thus, financial hardship as a chronic stress factor may affect migraine through altering circadian rhythms
Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.
BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA
Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.
OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke
- …
