23 research outputs found

    NH3-SCR catalysts for heavy-duty diesel vehicles: Preparation of CHA-type zeolites with low-cost templates

    Get PDF
    Computer-assistance allows selecting the most adequate low-cost organic structure directing agents (OSDAs) for the crystallization of Al-rich CHA-type zeolites. The host-guest stabilization energies of tetraethylammonium (TEA), methyltriethylammonium (MTEA) and dimethyldiethylammonium (DMDEA), in combination with Na, were first theoretically evaluated. This “ab-initio” analysis reveals that two TEA show a serious steric hindrance in a cha cavity, whereas two MTEA would present excellent host-guest confinements. The synthesis of Al-rich CHA-type zeolites has been accomplished using TEA and MTEA. Electron diffraction and high-resolution transmission electron microscopy reveal large CHA-domains with narrow faulted GME-domains in the CHA-type material synthesized with TEA, confirming the better OSDA-directing roles of MTEA cations towards the cha cavity, in good agreement with DFT calculations. Cu-exchanged Al-rich CHA-type samples achieved with MTEA and TEA show excellent catalytic activity and hydrothermal stability for the selective catalytic reduction (SCR) of NOx with ammonia under conditions relevant for future heavy duty diesel conditions.This work has been supported by Umicore and by the Spanish Government-MCIU through RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE) and PID2020-112590GB-C21 (AEI/FEDER, UE). T.W. acknowledges financial support by the Swedish Research Council (Grant No. 2019-05465). E.B. acknowledges the Spanish Government-MCIU for a FPI scholarship (PRE2019-088360). P.F. thanks ITQ for a contract. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. The computations were performed on the Tirant III cluster of the Servei d'Informàtica of the University of Valencia
    corecore