5,374 research outputs found

    Advanced modulation technology development for earth station demodulator applications. Coded modulation system development

    Get PDF
    A jointly optimized coded modulation system is described which was designed, built, and tested by COMSAT Laboratories for NASA LeRC which provides a bandwidth efficiency of 2 bits/s/Hz at an information rate of 160 Mbit/s. A high speed rate 8/9 encoder with a Viterbi decoder and an Octal PSK modem are used to achieve this. The BER performance is approximately 1 dB from the theoretically calculated value for this system at a BER of 5 E-7 under nominal conditions. The system operates in burst mode for downlink applications and tests have demonstrated very little degradation in performance with frequency and level offset. Unique word miss rate measurements were conducted which demonstrate reliable acquisition at low values of Eb/No. Codec self tests have verified the performance of this subsystem in a stand alone mode. The codec is capable of operation at a 200 Mbit/s information rate as demonstrated using a codec test set which introduces noise digitally. The measured performance is within 0.2 dB of the computer simulated predictions. A gate array implementation of the most time critical element of the high speed Viterbi decoder was completed. This gate array add-compare-select chip significantly reduces the power consumption and improves the manufacturability of the decoder. This chip has general application in the implementation of high speed Viterbi decoders

    Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology

    Get PDF
    Recently we described a role for Ebola virus proteins, NP, GP, and VP35 in enhancement of VP40 VLP budding. To explore the possibility that VLP structure was altered by co-expression of EBOV proteins leading to the observed enhancement of VP40 VLP budding, we performed density gradient analysis as well as electron microscopy studies. Our data suggest that VP40 is the major determinant of VLP morphology, as co-expression of NP, GP and VP35 did not significantly change VLP density, length, and diameter. Ultra-structural changes were noted in the core of the VLPs when NP was co-expressed with VP40. Overall, these findings indicate that major changes in morphology of VP40 VLPs were likely not responsible for enhanced budding of VP40 VLPs in the presence of GP, NP and/or VP35

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Overexpression of the cAMP Receptor 1 in Growing Dictyostelium Cells

    Get PDF
    cAR1, the cAMP receptor expressed normally during the early aggregation stage of the Dictyostelium developmental program, has been expressed during the growth stage, when only low amounts of endogenous receptors are present. Transformants expressing cAR1 have 7-40 times over growth stage and 3-5-fold over aggregation stage levels of endogenous receptors. The high amounts of cAR1 protein expressed constitutively throughout early development did not drastically disrupt the developmental program; the onset of aggregation was delayed by 1-3 h, and then subsequent stages proceeded normally. The affinity of the expressed cAR1 was similar to that of the endogenous receptors in aggregation stage cells when measured either in phosphate buffer (two affinity states with K(d)'s of approximately 30 and 300 nM) or in 3 M ammonium sulfate (one affinity state with a K(d) of 2-3 nM). When expressed during growth, cAR1 did not appear to couple to its normal effectors since these cells failed to carry out chemotaxis or to elevate cGMP or cAMP levels when stimulated with cAMP. However, cAMP stimulated phosphorylation, and loss of ligand binding of cAR1 did occur. Like aggregation stage control cells, the cAR1 protein shifted in apparent molecular mass from 40 to 43 kDa and became highly phosphorylated when exposed to cAMP. In addition, the number of surface cAMP binding sites in cAR1 cells was reduced by over 80% during prolonged cAMP stimulation. These results define a useful system to express altered cARl proteins and examine their regulatory functions

    Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method

    Get PDF
    A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses

    Atomic magnetometer for human magnetoencephalograpy.

    Get PDF
    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography
    corecore