3,330 research outputs found
Ab initio Green's function formalism for band structures
Using the Green's function formalism, an ab initio theory for band structures
of crystals is derived starting from the Hartree-Fock approximation. It is
based on the algebraic diagrammatic construction scheme for the self-energy
which is formulated for crystal orbitals (CO-ADC). In this approach, the poles
of the Green's function are determined by solving a suitable Hermitian
eigenvalue problem. The method is not only applicable to the outer valence and
conduction bands, it is also stable for inner valence bands where strong
electron correlations are effective. The key to the proposed scheme is to
evaluate the self-energy in terms of Wannier orbitals before transforming it to
a crystal momentum representation. Exploiting the fact that electron
correlations are mainly local, one can truncate the lattice summations by an
appropriate configuration selection scheme. This yields a flat configuration
space; i.e., its size scales only linearly with the number of atoms per unit
cell for large systems and, under certain conditions, the computational effort
to determine band structures also scales linearly. As a first application of
the new formalism, a lithium fluoride crystal has been chosen. A minimal basis
set description is studied, and a satisfactory agreement with previous
theoretical and experimental results for the fundamental band gap and the width
of the F 2p valence band complex is obtained.Comment: 20 pages, 3 figures, 1 table, RevTeX4, new section on lithium
fluorid
Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth\u27s climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models
Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma
The two-dimensional one-component plasma (2dOCP) is a system of mobile
particles of the same charge on a surface with a neutralising background.
The Boltzmann factor of the 2dOCP at temperature can be expressed as a
Vandermonde determinant to the power . Recent advances in
the theory of symmetric and anti-symmetric Jack polymonials provide an
efficient way to expand this power of the Vandermonde in their monomial basis,
allowing the computation of several thermodynamic and structural properties of
the 2dOCP for values up to 14 and equal to 4, 6 and 8. In this
work, we explore two applications of this formalism to study the moments of the
pair correlation function of the 2dOCP on a sphere, and the distribution of
radial linear statistics of the 2dOCP in the plane
Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals
We discuss the adiabatic self-trapping of small polarons within the density
functional theory (DFT). In particular, we carried out plane-wave
pseudo-potential calculations of the triplet exciton in NaCl and found no
energy minimum corresponding to the self-trapped exciton (STE) contrary to the
experimental evidence and previous calculations. To explore the origin of this
problem we modelled the self-trapped hole in NaCl using hybrid density
functionals and an embedded cluster method. Calculations show that the
stability of the self-trapped state of the hole drastically depends on the
amount of the exact exchange in the density functional: at less than 30% of the
Hartree-Fock exchange, only delocalized hole is stable, at 50% - both
delocalized and self-trapped states are stable, while further increase of exact
exchange results in only the self-trapped state being stable. We argue that the
main contributions to the self-trapping energy such as the kinetic energy of
the localizing charge, the chemical bond formation of the di-halogen quasi
molecule, and the lattice polarization, are represented incorrectly within the
Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl
Neutrino Interactions at Ultrahigh Energies
We report new calculations of the cross sections for deeply inelastic
neutrino-nucleon scattering at neutrino energies between 10^{9}\ev and
10^{21}\ev. We compare with results in the literature and assess the
reliability of our predictions. For completeness, we briefly review the cross
sections for neutrino interactions with atomic electrons, emphasizing the role
of the -boson resonance in interactions for neutrino
energies in the neighborhood of 6.3\pev. Adopting model predictions for
extraterrestrial neutrino fluxes from active galactic nuclei, gamma-ray
bursters, and the collapse of topological defects, we estimate event rates in
large-volume water \v{C}erenkov detectors and large-area ground arrays.Comment: 32 pages, 11 figures, uses RevTeX and boxedep
Plasmon-phonon coupling in large-area graphene dot and antidot arrays
Nanostructured graphene on SiO2 substrates pave the way for enhanced
light-matter interactions and explorations of strong plasmon-phonon
hybridization in the mid-infrared regime. Unprecedented large-area graphene
nanodot and antidot optical arrays are fabricated by nanosphere lithography,
with structural control down to the sub-100 nanometer regime. The interaction
between graphene plasmon modes and the substrate phonons is experimentally
demonstrated and structural control is used to map out the hybridization of
plasmons and phonons, showing coupling energies of the order 20 meV. Our
findings are further supported by theoretical calculations and numerical
simulations.Comment: 7 pages including 6 figures. Supporting information is available upon
request to author
Light emission from a scanning tunneling microscope: Fully retarded calculation
The light emission rate from a scanning tunneling microscope (STM) scanning a
noble metal surface is calculated taking retardation effects into account. As
in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev.
B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric
properties of tip and sample are described by experimentally measured
dielectric functions. The calculations are based on exact diffraction theory
through the vector equivalent of the Kirchoff integral. The present results are
qualitatively similar to those of the non-retarded calculations. The light
emission spectra have pronounced resonance peaks due to the formation of a
tip-induced plasmon mode localized to the cavity between the tip and the
sample. At a quantitative level, the effects of retardation are rather small as
long as the sample material is Au or Cu, and the tip consists of W or Ir.
However, for Ag samples, in which the resistive losses are smaller, the
inclusion of retardation effects in the calculation leads to larger changes:
the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These
changes improve the agreement with experiment. For a Ag sample and an Ir tip,
the quantum efficiency is 10 emitted photons in the visible
frequency range per tunneling electron. A study of the energy dissipation into
the tip and sample shows that in total about 1 % of the electrons undergo
inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear
in Phys. Rev. B (15 October 1998
A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches
Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1±1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. © 2013 Luan et al
Leptonic constants of heavy quarkonia in potential approach of NRQCD
We consider a general scheme for calculating the leptonic constant of heavy
quarkonium QQ-bar in the framework of nonrelativistic quantum chromodynamics,
NRQCD, operating as the effective theory of nonrelativistic heavy quarks. We
explore the approach of static potential in QCD, which takes into account both
the evolution of effective charge in the three-loop approximation and the
linearly raising potential term, which provides the quark confinement. The
leptonic constants of bb-bar and cc-bar systems are evaluated by making use of
two-loop anomalous dimension for the current of nonrelativistic quarks, where
the factor for the normalization of matrix element is introduced in order to
preserve the renormalization group invariance of estimates.Comment: 18 pages, 6 eps-figures, discussion and references added, vNRQCD
analysis considere
Recent star formation in nearby galaxies from GALEX imaging:M101 and M51
The GALEX (Galaxy Evolution Explorer) Nearby Galaxies Survey is providing
deep far-UV and near-UV imaging for a representative sample of galaxies in the
local universe. We present early results for M51 and M101, from GALEX UV
imaging and SDSS optical data in five bands. The multi-band photometry of
compact stellar complexes in M101 is compared to population synthesis models,
to derive ages, reddening, reddening-corrected luminosities and current/initial
masses. The GALEX UV photometry provides a complete census of young compact
complexes on a approximately 160pc scale. A galactocentric gradient of the
far-UV - near-UV color indicates younger stellar populations towards the outer
parts of the galaxy disks, the effect being more pronounced in M101 than in
M51.Comment: This paper will be published as part of the Galaxy Evolution Explorer
(GALEX) Astrophysical Journal Letters Special Issue. Full paper available
from http://dolomiti.pha.jhu.edu . Links to full set of papers will be
available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22,
200
- …