16 research outputs found

    Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at √sNN = 5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at √s = 5.02 TeV was measured as well in 0.5 < pT < 10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT = 5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an incoherent superposition of nucleon–nucleon collisions is evaluated by measuring the nuclear modification factor RAA. The measurement of the RAA in different centrality classes allows in-medium energy loss of charm and beauty quarks to be investigated. The RAA shows a suppression with respect to unity at intermediate pT, which increases while moving towards more central collisions. Moreover, the measured RAA is sensitive to the modification of the parton distribution functions (PDF) in nuclei, like nuclear shadowing, which causes a suppression of the heavy-quark production at low pT in heavy-ion collisions at LHC

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at t √s=13 TeV

    No full text
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K∗(892)0 and φ(1020) mesons at midrapidity in pp collisions at √s = 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at √s=13 TeV

    No full text
    Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively

    HΛ3 and H‟Λ‟3 lifetime measurement in Pb–Pb collisions at √sNN=5.02 TeV via two-body decay

    No full text
    An improved value for the lifetime of the (anti-)hypertriton has been obtained using the data sample of Pb–Pb collisions at √sNN = 5.02 TeV collected by the ALICE experiment at the LHC. The (anti-)hypertriton has been reconstructed via its charged two-body mesonic decay channel and the lifetime has been determined from an exponential fit to the dN/d(ct) spectrum. The measured value, τ = 242+34 −38 (stat.) ± 17 (syst.) ps, is compatible with representative theoretical predictions, thus contributing to the solution of the longstanding hypertriton lifetime puzzle

    Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC

    No full text
    This work presents new constraints on the existence and the binding energy of a possible – bound state, the H-dibaryon, derived from – femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 5.02 TeV, combined with previously published results from pp collisions at √s = 7 TeV. The – scattering parameter space, spanned by the inverse scattering length f −1 0 and the effective range d0, is constrained by comparing the measured – correlation function with calculations obtained within the LednickĂœ model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the – interaction. The region in the (f −1 0 ,d0) plane which would accommodate a – bound state is substantially restricted compared to previous studies. The binding energy of the possible – bound state is estimated within an effective-range expansion approach and is found to be B = 3.2+1.6 −2.4(stat)+1.8 −1.0(syst) MeV

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic and triangular flow coefficients v2 and v3 of prompt D0, D+, and D∗+ mesons were measured at midrapidity (|y| < 0.8) in Pb–Pb collisions at the centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval 1 < pT < 36 GeV/c in central (0–10%) and semi-central (30–50%) collisions. Compared to pions, protons, and J/ψ mesons, the average D-meson vn harmonics are compatible within uncertainties with a mass hierarchy for pT 3 GeV/c, and are similar to those of charged pions for higher pT. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson v2 and pT-differential yields. The D-meson v2 is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event Dmeson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium

    Coherent J/psi photoproduction at forward rapidity in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The ALICE collaboration performed the first rapidity-differential measurement of J/psi coherent photoproduction in ultra-peripheral Pb\u2013Pb collisions at a center-of-mass energy sqrt(sNN) = 5.02 TeV. The J/psi is detected via its dimuon decay in the forward rapidity region (-4.0 < y < -2.5) for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 750 \u3bcb 121. The cross section for J/psi coherent production is presented in six rapidity bins. The results are compared with theoretical models for J/psi coherent photoproduction. These comparisons indicate that gluon shadowing effects play a role in the photoproduction process. The ratio of psi' to J/psi coherent photoproduction cross sections was measured and found to be consistent with that measured for photoproduction off protons
    corecore