7,381 research outputs found

    The Distance between Rival Nonstationary Fractional Processes

    Get PDF
    Asymptotic inference on nonstationary fractional time series models, including cointegrated ones, is proceeding along two routes, determined by alternative definitions of nonstationary processes. We derive bounds for the mean squared error of the difference between (possibly tapered) discrete Fourier transforms under two regimes. We apply the results to deduce limit theory for estimates of memory parameters, including ones for cointegrated errors, with mention also of implications for estimates of cointegrating coefficients.Nonstationary fractional processes, memory parameter estimation, fractional cointegration, rates of convergence.

    Denis Sargan: some perspectives.

    Get PDF
    We attempt to present Denis Sargan’s work in some kind of historical perspective, in two ways. First, we discuss some previous members of the Tooke Chair of Economic Science and Statistics, which was founded in 1859 and which Sargan held. Second, we discuss one of his articles “Asymptotic Theory and Large Models” in relation to modern preoccupations with semiparametric econometrics.

    Multiple Local Whittle Estimation in StationarySystems

    Get PDF
    Moving from univariate to bivariate jointly dependent long memory time series introduces a phase parameter (?), at the frequency of principal interest, zero; for shortmemory series ? = 0 automatically. The latter case has also been stressed under longmemory, along with the 'fractional differencing' case ( ) / 2; 2 1 ? = d - d p where 1 2 d , dare the memory parameters of the two series. We develop time domain conditionsunder which these are and are not relevant, and relate the consequent properties ofcross-autocovariances to ones of the (possibly bilateral) moving averagerepresentation which, with martingale difference innovations of arbitrary dimension,is used in asymptotic theory for local Whittle parameter estimates depending on asingle smoothing number. Incorporating also a regression parameter (ß) which, whennon-zero, indicates cointegration, the consistency proof of these implicitly-definedestimates is nonstandard due to the ß estimate converging faster than the others. Wealso establish joint asymptotic normality of the estimates, and indicate how thisoutcome can apply in statistical inference on several questions of interest. Issues ofimplementation are discussed, along with implications of knowing ß and of correct orincorrect specification of ? , and possible extensions to higher-dimensional systemsand nonstationary series.Long memory, phase, cointegration, semiparametricestimation, consistency, asymptotic normality.

    Denis Sargan: Some Perspectives

    Get PDF
    We attempt to present Denis Sargan's work in some kind of historical perspective, in two ways. First, we discuss some previous members of the Tooke Chair of Economic Science and Statistics, which was founded in 1859 and which Sargan held. Second, we discuss one of his artices 'Asymptotic Theory and Large Models' in relation to modern preoccupations with semiparametric econometrics.Denis Sargan, Tooke Chair of Economic Science and Statistics, asymptotic theory and large models, semiparametric econometrics.

    Modelling Memory of Economic and Financial Time Series

    Get PDF
    Much time series data are recorded on economic and financial variables. Statistical modelling of such data is now very well developed, and has applications in forecasting. We review a variety of statistical models from the viewpoint of 'memory', or strength of dependence across time, which is a helpful discriminator between different phenomena of interest. Both linear and nonlinear models are discussed.Long memory, short memory, stochastic volatility

    ROBUST COVARIANCE MATRIX ESTIMATION: "HAC" Estimates with Long Memory/Antipersistence Correction

    Get PDF
    Smoothed nonparametric estimates of the spectral density matrix at zero frequency have been widely used in econometric inference, because they can consistently estimate the covariance matrix of a partial sum of a possibly dependent vector process. When elements of the vector process exhibit long memory or antipersistence such estimates are inconsistent. We propose estimates which are still consistent in such circumstances, adapting automatically to memory parameters that can vary across the vector and be unknown.Covariance matrix estimation, long memory, antipersistence correction, "HAC" estimates, vector process, spectral density.

    Inference on power law spatial trends

    Full text link
    Power law or generalized polynomial regressions with unknown real-valued exponents and coefficients, and weakly dependent errors, are considered for observations over time, space or space--time. Consistency and asymptotic normality of nonlinear least-squares estimates of the parameters are established. The joint limit distribution is singular, but can be used as a basis for inference on either exponents or coefficients. We discuss issues of implementation, efficiency, potential for improved estimation and possibilities of extension to more general or alternative trending models to allow for irregularly spaced data or heteroscedastic errors; though it focusses on a particular model to fix ideas, the paper can be viewed as offering machinery useful in developing inference for a variety of models in which power law trends are a component. Indeed, the paper also makes a contribution that is potentially relevant to many other statistical models: Our problem is one of many in which consistency of a vector of parameter estimates (which converge at different rates) cannot be established by the usual techniques for coping with implicitly-defined extremum estimates, but requires a more delicate treatment; we present a generic consistency result.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ349 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Variance-type estimation of long memory

    Get PDF
    The aggregation procedure when a sample of length N is divided into blocks of length m = o(N), m ® ¥ and observations in each block are replaced by their sample mean, is widely used in statistical inference. Taqqu, Teverovsky and Willinger (1995), Teverovsky and Taqqu (1997) introduced an aggregate variance estimator of the long memory parameter of a stationary sequence with long range dependence and studied its empirial performance. With respect to autovariance structure and marginal distribution, the aggregated series is closer to Gaussian fractional noise than the initial series. However, the variance type estimator based on aggregated data is seriously biased. A refined estimator, which employs least squares regression across varying levels of aggregation, has much smaller bias, permitting derivation of limiting distributional properties of suitably centered estimates, as well as of a minimum mean squared error choice of bandwidth m. The results vary considerably with the actual value of the memory parameter

    Pseudo-Maximum Likelihood Estimation of ARCH(8) Models

    Get PDF
    Strong consistency and asymptotic normality of the Gaussian pseudo-maximumlikelihood estimate of the parameters in a wide class of ARCH(8) processesare established. We require the ARCH weights to decay at least hyperbolically,with a faster rate needed for the central limit theorem than for the law of largenumbers. Various rates are illustrated in examples of particular parameteriza-tions in which our conditions are shown to be satisfied.ARCH(8,)models, pseudo-maximum likelihoodestimation, asymptotic inference

    Higher-Order Kernel Semiparametric M-Estimation of Long Memory

    Get PDF
    Econometric interest in the possibility of long memory has developed as a flexible alternative to, or compromise between, the usual short memory or unit root prescriptions, for example in the context of modelling cointegrating or other relationships and in describing the dependence structure of nonlinear functions of financial returns. Semiparametric methods of estimating the memory parameter can avoid bias incurred by misspecification of the short memory component. We introduce a broad class of such semiparametric estimates that also covers pooling across frequencies. A leading "Box-Club" sub-class, indexed by a single tuning parameter, interpolates between the popular local log periodogram and local Whittle estimates, leading to a smooth interpolation of asymptotic variances. The bias of these two estimates also differs to higher order, and we also show how bias, and asymptotic mean square error, can be reduced, across the class of estimates studied, by means of a suitable version of higher-order kernels. We thence calculate an optimal bandwidth (the number of low frequency periodogram ordinates employed) which minimizes this mean squared error. Finite sample performance is studied in a small Monte Carlo experiment, and an empirical application to intra-day foreign exchange returns is included.Long memory, semiparametric methods, higher-order kernel, M-estimation, bias, mean-squared error.
    corecore