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Abstract

Strong consistency and asymptotic normality of the Gaussian pseudo-maximum

likelihood estimate of the parameters in a wide class of ARCH(1) processes

are established. We require the ARCH weights to decay at least hyperbolically,

with a faster rate needed for the central limit theorem than for the law of large

numbers. Various rates are illustrated in examples of particular parameteriza-

tions in which our conditions are shown to be satis�ed.
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1. INTRODUCTION

ARCH(1) processes comprise a wide class of models for conditional heteroscedas-

ticity in time series. Consider, for t 2 Z = f0;�1; :::g, the equations

xt = �t"t; (1)

�2t = !0 +
1X
j=1

 0jx
2
t�j; (2)

where

!0 > 0;  0j > 0 (j � 1);
1X
j=1

 0j <1; (3)

and f"tg is a sequence of independent identically distributed (i:i:d:) unobservable

real-valued random variables. Any strictly stationary solution xt to (1) and (2) will

be called an ARCH(1) process. We consider a parametric version, in which we know

functions  j(�) of the r � 1 vector �, for r <1, such that for some unknown �0

 j(�0) =  0j; j � 1: (4)

Also, !0 is unknown and xt is unobservable but we observe

yt = �0 + xt (5)

for some unknown �0.

ARCH(1) processes, extending the ARCH(m), m < 1, process of Engle (1982)

and the GARCH(n;m) process of Bollerslev (1986), were considered by Robinson

(1991) as a class of parametric alternatives in testing for serial independence of yt.

Empirical evidence of Whistler (1990), Ding, Granger and Engle (1993) has suggested

the possibility of long memory autocorrelation in the squares of �nancial data. Taking

(contrary to the �rst requirement in (3)) !0 = 0, such long memory in x2t driven by

(1) and (2) was considered by Robinson (1991), the  0j being the autoregressive

weights of a fractionally integrated process, implying
P1

j=1  0j = 1; see also Ding
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and Granger (1996). For such  0j, and the same objective function as was employed

to generate the tests of Robinson (1991), Koulikov (2003) established asymptotic

statistical properties of estimates of �0. On the other hand, under our assumption

!0 > 0, Giraitis, Kokoszka and Leipus (2000) found that such  0j are inconsistent

with covariance stationarity of xt, which holds when
P1

j=1  0j < 1. Finite variance

of xt implies summability of coe¢ cients of a linear moving average in martingale

di¤erences representation of x2t ; see Za¤aroni (2004). In this paper we do not assume

�nite variance of xt, but rather that xt has a �nite fractional moment of degree

less than 2. The �rst requirement in (3) was shown by Kazakevicius and Leipus

(2002) to be necessary for existence of an xt satisfying (1) and (2). The intermediate

requirement in (3) is su¢ cient but not necessary for a.s. positivity of �2t , and is

imposed here to facilitate a clearer focus on  0j which decay, possibly slowly, but

never vanish.

We wish to estimate the (r+2)�1 vector �0 = (!0; �0; � 00)
0 on the basis of observa-

tions yt, t = 1; :::; T , the prime denoting transposition. The case when �0 is known,

e.g. �0 = 0, is covered by a simpli�ed version of our treatment. If the yt are instead

unobserved regression errors then �0 = 0 but we would need to replace xt by residu-

als in what follows; the details of this extension would be relatively straightforward.

Another relatively straightforward extension would cover simultaneous estimation of

regression parameters, !0 and �0, after replacing �0 by a more general parametric

function; as in (1), (2) and (5), e¢ ciency gain is a¤orded by simultaneous estimation.

Under stronger restrictions than
P1

j=1  0j < 1, Giraitis and Robinson (2001) con-

sidered discrete-frequencyWhittle estimation of �0, based on the squared observations

y2t (with �0 known to be zero), this being asymptotically equivalent to constrained

least squares regression of y2t on the y
2
t�s, s > 0, a method employed in special cases

of (2) by Engle (1982) and Bollerslev (1986). In these the spectral density of y2t ,

when it exists, has a convenient closed form. This property, along with availability
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of the fast Fourier transform, makes discrete-frequency Whittle based on the y2t a

computationally attractive option for point estimation, even in very long �nancial

time series. However it has a number of disadvantages, as discussed by Giraitis and

Robinson (2001): it is not only asymptotically ine¢ cient under Gaussian "t; but never

asymptotically e¢ cient; it requires �niteness of fourth moments of yt for consistency

and of eighth moments for asymptotic normality; which are sometimes considered

unacceptable for �nancial data; its limit covariance matrix is relatively complicated

to estimate; it is less well motivated in ARCH models than in stochastic volatility

and nonlinear moving average models such as those of Taylor (1986), Robinson and

Za¤aroni (1997, 1998), Harvey (1998), Breidt et al (1998), Za¤aroni (2003), where the

actual likelihood is computationally relatively intractable, whilst Whittle estimation

also plays a less special role in the short-memory-in-y2t ARCH models of Giraitis and

Robinson (2001) than in the long-memory-in-y2t models of the previous �ve references,

where it entails automatic �compensation�for possible lack of square-integrability of

the spectrum of y2t : Mikosch and Straumann (2002) have shown that a �nite fourth

moment is necessary for consistency of Whittle estimates, and that convergence rates

are slowed by fat tails in "t.

For Gaussian "t a widely-used approximate maximum likelihood estimate is de�ned

as follows. Denote by � = (!; �; � 0)0 any admissible value of �0 and de�ne

xt(�) = yt � �;

�2t (�) = ! +

1X
j=1

 j(�)x
2
t�j(�);

for t 2 Z, and

��2t (�) = ! +
t�1X
j=1

 j(�)x
2
t�j(�)1(t � 2);
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for t � 1, where 1(:) denotes the indicator function. De�ne also

qt(�) =
x2t (�)

�2t (�)
+ ln�2t (�); �qt(�) =

x2t (�)

��2t (�)
+ ln ��2t (�); 1 � t � T;

QT (�) = T�1
TX
t=1

qt(�); �QT (�) = T�1
TX
t=1

�qt(�);

~�T = argmin
�2�

QT (�); �̂T = argmin
�2�

�QT (�);

where � is a prescribed compact subset of Rr+2. The quantities with over-bar are

introduced due to yt being unobservable for t � 0; ~�T is uncomputable. Because

we do not assume Gaussianity in the asymptotic theory, we refer to �̂T as a pseudo-

maximum likelihood estimate (PMLE).

We establish strong consistency of �̂T and asymptotic normality of T
1
2

�
�̂T � �0

�
,

as T ! 1, for a class of  j(�) sequences. In case of the �rst property this is

accomplished by �rst showing strong consistency of ~�T and then that �̂T � ~�T ! 0,

a.s. In case of the second we likewise �rst show it for T
1
2

�
~�T � �0

�
and then show

that �̂T � ~�T = op(T
� 1
2 ), but the latter property, and thus the asymptotic normality

of T
1
2 (�̂T � �0), is achieved only under a restricted set of possible �0 values, and this

seems of practical concern in relation to some popular choices of the  j(�). These

results are presented in the following section, along with a description of regularity

conditions and partial proof details. The structure of the proof is similar in several

respects to earlier ones for the GARCH case of (2), especially that of Berkes, Horvath

and Kokoszka (2003). Sections 3 and 4 apply the results to particular parametric

models.

2. ASSUMPTIONS AND MAIN RESULTS

Our assumptions are as follows.
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Assumption A(q), q � 2. The "t are i.i.d. random variables with E"0 = 0; E"20 = 1;

E j"0jq <1 and probability density function f(") satisfying

f(") = O
�
L(j"j�1) j"jb

�
; as "! 0;

for b > �1 and a function L that is slowly varying at the origin.

Assumption B. There exist !L; !U ; �L; �U such that 0 < !L < !U < 1; �1 <

�L < �U <1, and a compact set � 2 Rr such that � = [!L; !U ]� [�L; �U ]� �:

Assumption C. �0 is an interior point of �.

Assumption D. For all j � 1,

inf
�2�

 j(�) > 0; (6)

sup
�2�

 j(�) � Kj�d�1, for some d > 0; (7)

 0j � K 0k for 1 � k � j; (8)

where K throughout denotes a generic, positive constant.

Assumption E. There exists a strictly stationary and ergodic solution xt to (1)

and (2), and for some

� 2 ((d+ 1)�1; 1); (9)

with d as in Assumption D, we have

E jx0j2� <1: (10)

Assumption F (l). For all j � 1;  j(�) has continuous kth derivative on � such

that, with � i denoting the i-th element of �,���� @k j(�)@� i1 :::@� ik

���� � K j(�)
1�� (11)

for all � > 0 and all ih = 1; :::; r; h = 1; :::; k; k � l:
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Assumption G. For each � 2 � there exist integers ji = ji(�); i = 1; :::; r; such that

1 � j1(�) < ::: < jr(�) <1 and

rank
�
	(j1;:::;jr)(�)

	
= r;

where

	(j1;:::;jr)(�) =
n
 
(1)
j1
(�); :::;  

(1)
jr
(�)
o
;  

(1)
j (�) =

@ j(�)

@�
:

Assumption H. There exists

d0 >
1

2
(12)

such that

 0j � Kj�1�d0 ; (13)

and (10) holds for

� 2 (4=(2d0 + 3); 1): (14)

Assumption A(q) allows some asymmetry in "t, but implies the less primitive condi-

tion (which does not even require existence of a density) employed in a similar context

by Berkes, Horvath and Kokoszka (2003). Assumptions B and C are standard. The

inequalities (7) and (13) together imply d0 � d, whilst (8) with (3) is milder than

monotonicity but implies  0j = o(j�1) as j !1. We take � > 0 in Assumption F (l)

because  j(�) < 1 for all large enough j, by (7). Assumption G is crucial to the proof

of consistency, being used in Lemmas 9 and 10 to show that, in the limit, �0 globally

minimizes QT (�); it also ensures non-singularity of the matrix H0 in Proposition 2

and Theorem 2 below. This and other assumptions are discussed in Sections 3 and 4

in connection with some parameterizations of interest,

We present asymptotic results for the uncomputable ~�T as propositions, those for

�̂T as theorems. All these, and the Corollaries in Sections 3 and 4 and Lemmas in

Section 5, assume (1)-(5).
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Proposition 1 For some � > 0, let Assumptions A(2 + �), B, C, D, E, F (1) and

G; hold. Then

~�T ! �0 a:s: as T !1:

Proof. The proof follows as in, e.g., Jennrich (1969, Theorem 6) from uniform a.s.

convergence, over �, of QT (�) to Q(�) = Eq0(�) established in Lemma 7, the fact

that QT (�̂T ) � QT (�), and Lemma 10.

Theorem 1 For some � > 0, let Assumptions A(2 + �), B, C, D, E, F (1) and G

hold. Then

�̂T ! �0 a:s: as T !1: (15)

Proof. From Lemmas 7 and 8, �QT (�) converges uniformly to Q(�) a.s., whence the

proof is as indicated for Proposition 1.

Denote by �j the j-th cumulant of "t and introduce

G0 = (2 + �4)M � 2�3(N +N 0) + P; H0 =M +
1

2
P;

where

M = E(� 0�
0
0); N = E(��10 � 0)e

0
2; P = E(��20 )e2e

0
2;

for � 0 = � 0(�0), � t(�) = (@=@�) log �2t (�), and e2 the second column of the (r + 2) �

(r + 2) identity matrix. In case �0 is known (for example, to be zero), we omit the

second row and column fromM , and have instead G0 = (2+�4)M , H0 =M . In case

"t is Gaussian, �3 = �4 = 0, so G0 = 2H0 = 2M + P .

Proposition 2 Let Assumptions A(4); B; C; D; E; F (3) and G hold. Then

T
1
2

�
~�T � �0

�
!d N(0; H

�1
0 G0H

�1
0 ); as T !1:

Proof. Write

Q
(1)
T (�) =

@QT (�)

@�
= T�1

TX
t=1

ut(�);
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where

ut(�) = � t(�)(1� �2t (�)) + �
�2
t (�)�t(�);

with

�t(�) =
x2t (�)

�2t (�)
; �t(�) =

@xt2(�)

@�
= �2xt(�)e2:

By the mean value theorem

0 = Q
(1)
T (
~�T ) = Q

(1)
T (�0) +

eHT (~�T � �0); (16)

where eHT has as its ith row the ith row of HT (�) = T�1
PT

t=1 ht(�) evaluated at

� = ~�
(i)

T ; where ht(�) = (@
2=@�@�0)QT (�),




~�(i)T � �0




 � 


~�T � �0




, where we de�ne
kAk = ftr(A0A)g

1
2 for any real matrix A. Now ut(�0) = � t(�0)(1 � "2t ) � 2e2"t=�t

is, by Lemmas 2, 3 and 7, a stationary ergodic martingale di¤erence vector with

�nite variance, so from Brown (1971) and the Cramer-Wold device, T
1
2Q

(1)
T (�0) !d

N (0; G0) as T ! 1: Finally, by Lemma 7 and Theorem 1, eHT !p H0; whence the

proof is completed in standard fashion.

De�ne

�ut(�) =
@�qt(�)

@�
; �gt(�) = �ut(�)�u

0
t(�);

�ht(�) =
@2�qt(�)

@�@�0
;

�GT (�) = T�1
TX
t=1

�gt(�); �HT (�) = T�1
TX
t=1

�ht(�):

Theorem 2 Let Assumptions A(4), B, C, D, E, F(3), G and H hold. Then

T
1
2

�
�̂T � �0

�
!d N(0; H

�1
0 G0H

�1
0 ) as T !1; (17)

and H�1
0 G0H

�1
0 is strongly consistently estimated by �H�1

T (�̂T )
�GT (�̂T ) �H

�1
T (�̂T ).

Proof. We have

0 = �Q
(1)
T (�̂T ) =

�Q
(1)
T (�0) +

bHT (�̂T � �0);

where �Q(1)T (�) = (@=@�)QT (�) and ĤT has as its ith row the ith row of �HT (�) evaluated

at � = �̂
(i)

T , for



�̂(i)T � �0




 � 


�̂T � �0




 : Thus from (16)

�̂T � e�T = ( eH�1
T � bH�1

T )
�Q
(1)
T (�0)� eH�1

T

n
�Q
(1)
T (�0)�Q

(1)
T (�0)

o
;
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where the inverses exist a.s. for all su¢ ciently large T by Lemma 9. In view of

Proposition 2 and Lemma 8, (17) follows on showing that

�Q
(1)
T (�0)�Q

(1)
T (�0) = op(T

�1=2):

The left hand side can be written (B1T +B2T +B3T )=T; where

B1T =

TX
t=1

"2t b1t; B2T = �
TX
t=1

("2t � 1)b2t; B3T = �2e2
TX
t=1

"tb3t;

with

b1t = �
��
2(1)
t (�2t � ��2t )

��4t
; b2t =

�
2(1)
t

�2t
� ��

2(1)
t

��2t
; b3t =

�2t � ��2t
��2t�t

;

for ��2t = ��2t (�0), �
2(1)
t = �

2(1)
t (�0), ��

2(1)
t = ��

2(1)
t (�0), with �

2(1)
t (�) = (@=@�)�2t (�),

��
2(1)
t (�) = (@=@�)��2t (�). We show that BiT = op(T

1=2), i = 1; 2; 3. For the remainder

of this proof we drop the zero subscript in  0j:

Consider �rst B1T . We have

��
2(1)
t =

 
1;�2

t�1X
j=1

 jxt�j;
t�1X
j=1

 
(1)
j x2t�j

!0
; (18)

where  (1)j =  
(1)
j (�0). From Assumption F (1)


��2(1)t




 � 1 + 2 t�1X
j=1

 j jxt�jj+K
t�1X
j=1

 1��j x2t�j;

for all � > 0. Now

t�1X
j=1

 j jxt�jj �
 
t�1X
j=1

 jx
2
t�j

!1=2 1X
j=1

 j

!1=2
� K��t;

so since ��t � !L > 0

���2t

t�1X
j=1

 j jxt�jj � K���1t <1:

From (8),
t�1X
j=1

 1��j x2t�j � K ��t ��
2
t :
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It follows that 


��2(1)t




 =��2t � K ��t : (19)

On the other hand, by the cr-inequality (Loève (1977, p.157)) and (10)

E(�2t � ��2t )� � K

1X
j=t

 �jE jxt�jj
2� � K

1X
j=t

 �j : (20)

Thus by (8) and (14)

E kb1tk� � K ���t

1X
j=t

 �j � K

1X
j=t

 
�(1��)
j � Kt1��(d0+1)(1��); (21)

choosing � < 1�1=f�(d0+1)g, which (14) enables. Applying the cr-inequality again,

EkB1Tk�� K
TX
t=1

E j"0j2�E kb1tk� :

Applying (21), this is O(1) when � > 2=(d0 + 1), whilst when � � 2=(d0 + 1) we may

choose � so small to bound it by

KT 2��(d0+1)(1��) � KT �=2�f1+2(d0+1)(1��)g[�=2�2=f1+2(d0+1)(1��)g] = o(T �=2);

using (12) (which requires (13)), and arbitrariness of �. Thus B1T = op(T
1
2 ) by

Markov�s inequality.

Consider B2T . By independence of "t and b2t, by cr-inequality when � � 1
2
, and by

the inequality of von Bahr and Esseen (1965) and the fact that the "2t are i.i.d. with

mean 1 when � > 1
2
,

E kB2Tk2� � K

TX
t=1

(E j"0j4� + 1)E kb2tk2� � K

TX
t=1

(E kb4tk2� + E kb5tk2�);

where

b4t =
�
2(1)
t � ��2(1)t

�2t
; b5t =

��
2(1)
t (�2t � ��2t )
��2t�

2
t

:

11



Thus, from Assumptions F (1) and H,

kb4tk �
 
2

1X
j=t

 j jxt�jj+
1X
j=t




 (1)j 


x2t�j
!
=�2t :

� ��2t

242( 1X
j=t

 j

)1=2
+

( 1X
j=t

�


 (1)j 


2 = j� x2t�j
)1=235 ( 1X

j=t

 jx
2
t�j

)1=2

� K

8<:
 1X
j=t

j�d0�1

!1=2
+

 1X
j=t

 1�2�j x2t�j

!1=29=;
� K

24t�d0=2 +( 1X
j=t

j�(d0+1)(1�2�)x2t�j

)1=235 ;
so

E kb4tk2� � Kt��d0 +K
1X
j=t

j�(d0+1)�(1�2�) � Kt1�(d0+1)�(1�2�);

for su¢ ciently small �. Thus
PT

t=1E kb4tk
2� is O(1) for � > 2=(d0 + 1), whilst for

� � 2=(d0 + 1) it is bounded by

KT 2�(d0+1)�(1�2�) � KT ��(d0+2)f��2=(d0+2)g+2(d0+1)�� = o(T �)

from (14) and arbitrariness of �: Also kb5tk � K



��2(1)t =��2t




 (�2t � ��2t )1=2; so from (19)
and (20) we have E kb5tk2� � Kt1�(d0+1)�(1�2�); and proceeding as before

TX
t=1

E kb5tk2� = o(T �);

and thence B2T = op(T
1=2):

Next

E kB3Tk2� � KE

�����
TX
t=1

"tb3t

�����
2�

� K
TX
t=1

E j"0j2�Eb2�3t ;

applying cr-inequality when � � 1
2
and Von Bahr and Esseen (1965) when � > 1

2
.
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Now b3t � (�2t � ��2t )1=2���2t so from (20),

E kB3Tk2� � K
TX
t=1

1X
j=t

 �j

� K
�
(1(� > 2=(d0 + 1)) + (lnT )1(� = 2=(d0 + 1)) + T 2��(d0+1)1(� < 2=(d0 + 1))

	
= o(T �);

much as before. Thence B3T = op(T
1=2).

It remains to consider the last statement of the theorem, which follows on standard

application of Propositions 1 and 2, Theorem 1 and Lemmas 7 and 8.

In earlier versions of this paper we checked the conditions in case of GARCH(n;m)

models, in which the  j(�) decay exponentially, and we allow the possibility that

the GARCH coe¢ cients lie in a subspace of dimension less than m + n; the details

are available from the authors on request. However, the literature on asymptotic

theory for estimates of GARCH models is now extensive, recent references includ-

ing Berkes, Horvath and Kokoszka (2003), Comte and Lieberman (2003), Ling and

McAleer (2003) and Francq and Zakoian (2004), along with investigations of the

properties of the models themselves, see recently Basrak, Davis and Mikosch (2002),

Kazakevicius and Leipus (2002), Mikosch and Starica (2000). We focus instead on

alternative models which have received less attention, and for which our theoretical

framework is primarily intended. We introduce the generating function

 (z; �) =
1X
j=1

 j(�)z
j; jzj � 1: (22)
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3. FRACTIONAL GARCH MODELS

A slowly decaying class of ARCH(1) weights was considered by Robinson (1991),

Ding and Granger (1996), Koulikov (2003), generated by

 (z; �) = 1� (1� z)� ; 0 < � < 1; (23)

where r = 1 and formally

(1� z)d =

1X
j=0

�(j � d)

�(�d)�(j + 1)z
j; jzj � 1, d > 0: (24)

In these references !0 = 0 was assumed in (2), but we assume !0 > 0 and generalize

(23) as follows. Introduce the functions aj = aj(�), bj = bj(�) and, for m � 1, n � 0,

n+m � r,

a(z; �) =
mX
j=1

ajz
j; b(z; �) = 1�

nX
j=1

bjz
j1(n � 1); (25)

and for all � 2 �

aj > 0; j = 1; :::;m; bj > 0; j = 1; :::; n; (26)

b(z; �) 6= 0; jzj � 1; (27)

a(z; �) and b(z; �) have no common zeros in z. (28)

Now take  (z; �) (22) to be given by

 (z; �) =
a(z; �)f1� (1� z)dg

zb(z; �)
; (29)

with d = d(�) satisfying

d 2 (0; 1): (30)

We call xt based on (29) a fractional GARCH, FGARCH(n; d0;m), process, for d0 =

d(�0).
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Corollary 1 Let  (z; �) be given by (29) and (25) with m � 1, n � 0; and let d and

the aj; bj be continuously di¤erentiable. For some � > 0 let Assumptions A(2 + �),

B, C and E hold, with all � 2 � satisfying (26)-(28), (30) and

rank

�
@

@�
(a1; :::; am; b1; :::; bn; d))

�
= r:

Then (15) is true. Let also d and the aj; bj be thrice continuously di¤erentiable.

Assumption A(4) hold, and assume d0 > 1
2
and that (10) holds under (14). Then

(17) is true.

Proof. Denoting by cj (j � 1) and dj (j � 0) the coe¢ cients of zj in the expansions

of a(z; �)=b(z; �), z�1f1� (1� z)dg respectively, we have  j(�) =
Pj�1

k=0 cj�kdk, j � 1.

From Berkes, Horvath and Kokoszka (2003) the cj are bounded above and below

by positive, exponentially decaying sequences when n � 1, and are all non-negative

when n = 0. Since the dj are all positive, it follows that (6) holds. Also, Stirling�s

approximation indicates that j�d�1=K � dj � Kj�d�1, so the  j(�) satisfy the same

inequalities. Compactness of �, smoothness of d and (30) imply d(�) � d; to check

(7): The above argument indicates that  0j � Kj�d0�1 � Kk�d0�1 � K 0k for

j > k � 1, so (8) holds, and thus Assumption D. With regard to (11), note that

(@=@d) (z; �) = �fa(z; �)=b(z; �)gz�1(1� z)d ln(1� z), where the coe¢ cient of zj in

�z�1(1� z)d ln(1� z) is
Pj

k=1 k
�1dj�k � K(ln j)j�d�1 � Kj�(d+1)(1��) � K 1��j (�)

for any � > 0. Derivatives with respect to the aj; bj are dominated, and higher

derivatives can be dealt with similarly, to complete the checking of Assumption F (l).

To check Assumption G, suppress reference to � in a, b,  and

�(z) = b(z)�1f1� (1� z)dg; 
(z) = b(z)�1a(z);
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and note that

@ (z)

@aj
= zj�1�(z); j = 1; :::;m;

@ (z)

@bj
= zj�1
(z)�(z); j = 1; :::; n;

@ (z)

@d
= �
(z)

z
(1� z)d log(1� z):

Choose ji(�) = i for i = 1; :::;m + n, � 2 �; leaving jm+n+1(�) to be determined

subsequently. Fix � and write U = 	(ji;:::;jr)(�), partitioning it in the ratio m+ n : 1

and calling its (i; j)th submatrix Uij. We �rst show that the (m+n)�(m+n) matrix

U11 is non-singular. Write R for the n�(m+n) matrix with (i; j)th element 
j�i, and

S for the (m + n)� (m + n) matrix with (i; j)th element �j�i+1, where �j = 
j = 0

for j � 0, and for j > 0, �j and 
j are respectively given by

�(z) =
1X
j=1

�jz
j; 
(z) =

1X
j=1


jz
j;

these series converging absolutely for jzj � 1 in view of (30). Noting that  (1)j is given

by (@=@�) (z) =
P1

j=1  
(1)
j zj, we �nd that the �rst m rows of U11 can be written

(Im; O)S, where Im is the m-rowed identity matrix, O is the m� n matrix of zeroes,

and, when n � 1; the last n rows of U11 can be written RS. Now S is upper-triangular

with non-zero diagonal elements. Thus for n = 0; U11 = S is non-singular. For n � 1;

U11 is non-singular if and only if the n�n matrix, R2, having (i; j)th element 
m+j�i
and consisting of the last n columns of R; is non-singular. This is not so if and only

if the 
j, j = m; :::;m + n � 1; are generated by a homogeneous linear di¤erence

equation of degree n�1, that is if there exist scalars �0; �1; :::; �n�1, not all zero, such

that

�0
j �
n�1X
i=1

�i
j�i = 0; j = m; :::;m+ n� 1:

But it follows from (25) and (27) that they are generated by the linear di¤erence

16



equation


j �
n�1X
i=1

bi
j�i = �j; j = m; :::;m+ n� 1;

where �m = am + bn
m�n, �j = bn
j�n for j = m+ 1; :::;m+ n� 1. Since bn 6= 0 the

�j are all zero if and only if 
m�n = �am=bn and 
j = 0 for j = m+ 1� n; :::;m� 1.

But this implies 
m = 0 also, and thence 
j = 0, all j � m�n+1. For m � n this is

inconsistent with the requirement aj > 0, j = 1; :::;m, and for m > n it implies a has

a factor b, which is inconsistent with (28). Thus U11 is non-singular when n � 1. Non-

singularity of U follows if U22 6= U21U
�1
11 U12. For large enough jm+n+1 = jm+n+1(�)

this must be true because U22 decays like (ln jm+n+1)j�d�1m+n+1, whereas the elements

of U12 are O
�
�jm+n+1

�
for some � 2 (0; 1). This Assumption G is true, and thence

(13). Clearly (13) is true so under the additional conditions so is Assumption H, and

thence (17).

For m = 1, n = 0, (29) reduces to (23) when a1 = 1, whilst when a1 2 (0; 1) it

gives model (4.24) of Ding and Granger (1996). The important di¤erence between

these two cases is that the covariance stationarity condition  (1; �0) < 1 is satis�ed

in the second but not in the �rst. In general with (29), as with the GARCH model,

xt is covariance stationary when a(1; �0) < b(1; �0) but not otherwise. We compare

(29) with

 (z; �) = 1� f1� a(z; �)g
b(z; �)

(1� z)d; (31)

with d again satisfying (30) and a and b again given as in (25), though we now

allow m = 0, meaning a(z; �) � 0. Thus with m = n = 0, (31) reduces to (23).

ARCH(1) models with  given by (31) were proposed by Baillie, Bollerslev and

Mikkelsen (1996), and called FIGARCH(n; d0;m). In general, though (31) also gives

hyperbolically decaying  0j, it di¤ers in some notable respects. Application of (26)-

(28) ensures positivity of  j(�) in case of FGARCH and facilitates the above proof,

but su¢ cient conditions in FIGARCH are less apparent in general, though Baillie,
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Bollerslev and Mikkelsen (1996) indicated that they can be obtained. Also, unlike

FGARCH, FIGARCH xt never has �nite variance.

The requirement d0 > 1
2
for the central limit theorem in Corollary 2 would also

be imposed in a corresponding result for FIGARCH. This is automatically satis�ed

in GARCH(n;m) models but if only d0 2 (0; 1
2
] in (13) is possible in the general

setting of Section 3, it appears that the asymptotic bias in �̂T is of order at least T�
1
2 ,

whereas that for ~�T is always o(T�
1
2 ). Assumption G copes with the replacement of

�2t (�) by ��
2
t (�), the truncation error varying inversely with d0. Inspection of the proof

of Theorem 2 indicates that this bias problem is due to the term H�1B1T . The factor

�2t � ��2t in b1t is non-negative, and if j�d0�1 is an exact rate for  0j, �2t � ��2t exceeds

t�d0=K as t ! 1 with probability approaching one. So far as the factor ��2(1)t =�4t in

b1t is concerned, the second element of ��2(1) (see (18)) has zero mean, but the �rst

is positive, and though the  (1)j can have elements of either sign, whenever d0 � 1
2

it seems unlikely that the last r elements of B1T can be op(T
1
2 ). Nor is there scope

for relaxing (12) by strengthening other conditions. With regard to implications for

choice of �, when d0 � 2d+ 1
2
, (14) entails no restriction over (9).

Though results of Giraitis, Kokoszka and Leipus (2000) indicate existence of a

stationary solution of (1)-(3) when  (1; �0) < 1, Kazakevicius and Leipus (2003) have

questioned the existence of strictly stationary FIGARCH processes, and thus about

the relevance of Assumption E here. The same reservations can be expressed about

FGARCH when a(1; �0) � b(1; �0), and more generally about ARCH(1) processes

with  (1; �0) � 1. A su¢ cient condition for (10) can be deduced as follows. Recursive

substitution gives

�2t � K +K
1X
l=1

 1X
j1=1

� � �
1X
jl=1

 0j1 � � � 0jl"
2
t�j1"

2
t�j1�j2 � � � "

2
t�j1����jl

!
;

18



so by the cr-inequality

�2�t � K +K
1X
l=1

 1X
j1=1

� � �
1X
jl=1

 �0j1 � � � 
�
0jl
j"t�j1j

2� j"t�j1�j2j
2� � � � j"t�j1����jlj

2�

!
:

Thus from Lemma 2

E jxtj2� < E j�tj2� � K +K
1X
l=0

 
E j"0j2�

1X
j=1

 �0j

!l
:

The last bound is �nite if and only if

E j"0j2�
1X
j=1

 �0j < 1: (32)

Thus (10) holds if there is a � satisfying (9) and (32). Recursive substitution, and

the cr-inequality, were also used by Nelson (1990, Corollary) to upper-bound E j�tj2�

in the GARCH(1; 1) case, but he employed the simple dynamic structure available

there, and (35) does not reduce to his necessary and su¢ cient condition.

If  (1; �0) < 1, (32) adds nothing because we already know that Ex20 < 1 here,

but if  (1; �0) � 1 the second factor on the left of (32) exceeds 1 and increases with

�, and the question is either the �rst factor, which is less than 1 and decreases with

� (due to A(q)), can over-compensate. Analytic veri�cation of (32) for given �0; �

seems in general infeasible, and numerical veri�cation highly problematic when the

 j decay slowly. However, consider the family of densities

f(") = exp
h
�f�(
) j"jg1=


i
= f2
�(
)�(
)g (33)

for 
 > 0, where �(
) = f�(
)=�(3
)g 12 (also used by Nelson (1991) to model

the innovation of the exponential GARCH model). We have E"0 = 0, E"20 = 1

as necessary, Assumption A(q) is satis�ed for all q > 0, and E j"0j2� = �((2� +

1)
)=f�(
)1���(3
)�g: In case 
 = 0:5, (33) is the normal density, for which �̂T is

asymptotically e¢ cient. Here E j"0j2� = 2��(� + :5)=
p
�, and numerical calculations
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for FIGARCH(0; d0; 0) cast doubt on (32). In case 
 = 1, (33) is the Laplace density,

with E j"0j2� = 2��1�(2� + 1). As 
 increases, E j"0j2� can be made small for �xed

� < 1, for example with � = 0:95 it is 0:64 when 
 = 10 and 0:42 when 
 = 20.

4. GENERALIZED EXPONENTIAL AND HYPERBOLIC MODELS

FGARCH(n; d0;m) (and FIGARCH(n; d0;m)) processes require d0 2 (0; 1). For

d = 1, (29) reduces to the GARCH(n;m) case  (z; �) = a(z; �)=b(z; �), and for d > 1

at least one coe¢ cient in the expansion of (23) is negative, leading to the possibility of

negative  j(�). Because FGARCH  j(�) decay like j
�d�1, a large mathematical gap

is left relative to GARCH processes. Even if exponential decay is anticipated, there

is a case for more direct modelling of the  j(�) than provided by GARCH, since it is

the  j(�) and their derivatives that must be formed in point and interval estimation

based on the PMLE.

Consider the choices

 j(�) =
mX
i=1

�(fi + 1)
�1eid

fi+1jfie�dj; (34)

 j(�) =
mX
i=1

�(fi + 1)
�1eid ln

fi(j + 1)(j + 1)�d�1; (35)

where d = d(�) and the ei = ei(�), fi = fi(�) are such that � satis�es

d 2 (0;1); (36)

ei > 0; i = 1; :::;m; (37)

0 � f1 � � � � � fm <1; (38)

with 2m + 1 � r. Given (1)-(4) and (22), we call xt generated by (34) a generalized

exponential, GEXP(m), process, and xt generated by (35) a generalized hyperbolic,
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GHYP(m), process. Condition (38) is su¢ cient but not necessary for  j(�) > 0,

all j � 1. By choosing m large enough in (34) or (35), any �nite  (1; �) can be

arbitrarily well approximated, but (34) and (35) can also achieve parsimony. For real

x � 1, xfe�dx and (lnx)fx�d�1 decay monotonically if f = 0, and for f > 0 have

single maxima at f=d and ef=(d+1)respectively. Thus with m = 1 and f1 = 0 we have

monotonic decay in (34) and (35); otherwise both can exhibit lack of monotonicity,

whilst eventually decaying exponentially or hyperbolically. The scale factors in (34)

and (35) are so expressed because xfe�dx and (lnx)fx�d�1 integrate, over (0;1), to

�(f + 1)=df+1 and �(f + 1)=d, respectively, so that  (1; �) l
Pm

i=1 ei in both cases,

but the approximation may not be very close and the "integrated" case is less easy

to distinguish than in GARCH and FGARCH models (though it would be possible

to alternatively scale the weights, by in�nite sums, to achieve equality).

The following Corollary covers (34) and (35) simultaneously, and implies the special

case when the fi are speci�ed a priori, for example to be non-negative integers; strictly

speaking, when the true value of f1 is unknown, Assumption C prevents it from being

zero.

Corollary 2 Let  (z; �) be given by (22) and (34) or (35) with m � 1 and let d and

the ei; fi be continuously di¤erentiable. For some � > 0 let Assumptions A(2 + �),

B, C and E hold, with all � 2 � satisfying (36)-(38) and

rank

�
@

@�
(e1; f1; :::; em; fm; d)

�
= r:

Then (15) is true. Let also d and the ei; fi be thrice continuously di¤erentiable and

Assumption A(4) hold, and assume d0 = d(�0) >
1
2
in case of (35) and that (10)

holds under (14). Then (17) is true.

Proof. Given (36)-(38) and the proof of Corollary 1, the veri�cation of Assumptions

D and F (l) is straightforward. We check Assumption G for (35) only, a very similar
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type of proof holding for (34). We have

 
(1)
j =

24 E
�
u01j; :::; u

0
mj

�0
vj

35 d(j + 1)�d�1;
where

uij = (ln ln(j + 1)� (@=@fi) ln �(fi+1); 1)0 lnfi(j + 1); i = 1; :::; r;

vj = �
mX
i=1

ei�(fi+1)
�1 lnfi+1(j + 1);

and E is the diagonal matrix whose (2i � 1)th diagonal element is ei, and whose

even diagonal elements are all 1. Fixing �, we show �rst that the leading (r � 1) �

(r � 1) submatrix of 	(j1;:::;jr)(�) has full rank, equivalently that Um has full rank,

where, for i = 1; :::;m the (2i) � (2i) matrix Ui has (k; `)th 2�1 sub-vector ukj` ,

k = 1; :::; i, ` = 1; :::; 2i. Suppose, for some i = 1; :::;m � 1 and given j1; :::; j2i,

that Ui has full rank, and partition the rows and columns of Ui+1 in the ratio 2i :

2, calling its (k; `)th submatrix Uk` (so U11 = Ui). Take j2i+2 = j22i+1. Because

ln lnx strictly increases in x > 1, it follows that U22 is nonsingular and


U�122 

 =

O
�
ln ln j2i+1 ln

�fi+1 j2i+1
�
. Noting that kU12k = O

�
ln ln j2i+1 ln

fi j2i+1
�
, whilst U11

and U21 depend only on j1; :::; j2i, we can choose j2i+1 such that U11 � U12U
�1
22 U21

di¤ers negligibly from U11. Thus Ui+1 has full rank. Since, for f1 � 0, U1 has full rank

(for example when j1 = 1, j2 = 2), it follows by induction that Um has full rank. Since

vj is dominated by a term of order ln
fm+1 j, whilst kuijk = O

�
ln ln j lnfi j

�
; a similar

argument shows that jr can then be chosen large enough, to complete veri�cation of

Assumption G, and thence (15). We conclude (17) as in the proof of Corollary 1.
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5. TECHNICAL LEMMAS

De�ne

��2t (�) = ! +
1X
j=1

 j(�)x
2
t�j; ��2t = !U +

1X
j=1

sup
�2�

 j(�)x
2
t�j:

Lemma 1 Under Assumptions B and D, for all � 2 �, t 2 Z

K�1��2t (�) � �2t (�) � K��2t (�) a:s:

Proof. A simple extension of Lee and Hansen (1994, Lemma 1).

Lemma 2 Under Assumptions A(2), B, C, D and E, for all t 2 Z

E jxtj2� < E�2�t � Esup
�2�

�2�t (�) � KE��2�t � KE jxtj2� � K (39)

inf
�2�

�2t (�) > 0; sup
�2�

�2t (�) < K��2t <1 a:s:; (40)

Esup
�2�

��ln�2t (�)�� � K: (41)

Proof. With respect to (39), the �rst inequality follows from Jensen�s inequality,

the second is obvious, the third follows from Lemma 1, the fourth follows from the

cr-inequality, (7) and (9), whilst the last one is due to (10). The proof of (40) uses

Lemma 1, �2t (�) � !L; (10) and Loève (1977, p.121). To prove (41), jlnxj � x+ x�1

for x > 0 and Lemma 2 give

Esup
�2�

��ln�2t (�)�� � ��1Esup
�2�

�2�t (�) + E

�
inf
�2�

�2t (�)

��1
� K:

Lemma 3 Under Assumptions D, E and F(l), for all � 2 �, �2t (�), qt(�) and their

�rst l derivatives are strictly stationary and ergodic.
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Proof. Follows straightforwardly from the assumptions.

Lemma 4 Under Assumption A(2), for positive integer k < (b+ 1)n=2;

E

 
nX
t=1

"2t

!�k
<1: (42)

Proof. Denote by MX(t) = E(etX) the moment-generating function of a random

variable X. By Cressie et al (1981) the left side of (42) is proportional toZ 1

0

tk�1MP
"2t
(�t)dt =

Z 1

0

tk�1Mn
"20
(�t)dt

�
Z 1

0

tk�1dt+

Z 1

1

tk�1Mn
"20
(�t)dt: (43)

It su¢ ces to show that the last integral is bounded. For all � > 0, there exists � > 0

such that L("�1) � "��, " 2 (0; �), so

M"20
(�t) =

Z 1

�1
e�t"

2

f(")d" � K

Z �

0

e�t"
2

"b��d"+ 2e�t�
2

:

The last integral is bounded by

Kt(��b�1)=2
Z 1

0

e�""(��b�1)=2d" � Kt(��b�1)=2:

Thus (43) is �nite if k+n(��b�1)=2 < 0, that is, since � is arbitrary, if k < (b+1)n=2.

The previous version of the paper included a longer, independently obtained, proof

of the following lemma which we have been able to shorten in one respect by using

an idea of Berkes, Horvath and Kokoszka (2003) in a corresponding lemma covering

the GARCH(n;m) case.

Lemma 5 Under Assumptions A(q); B; C and D, for p < q=2,

E sup
�2�

�
�2t
�2t (�)

�p
� K <1:
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Proof. We have

�2t = !0 +  01x
2
t�1 +

1X
j=2

 0jx
2
t�j � !0 +  01�

2
t�1"

2
t�1 +K�2t�1

from (8). Thus �2t=�
2
t�1 � K

�
1 + "2t�1

�
and thence, for �xed j � 1, �2t=�2t�j � Khtj,

where htj = �
j
i=1

�
1 + "2t�i

�
. For any M <1

�2t
�2t (�)

� K�2t
��2t (�)

� K

 
!

�2t
+

MX
j=1

 j(�) "
2
t�j

�2t�j
�2t

!�1

�
KhtM=

�
inf
�2�

inf
j=1;:::;M

 j(�)

�
MX
j=1

"2t�j

:

The proof can now be completed much as in the proof of Lemma 5.1 of Berkes,

Horvath and Kokoszka (2003), using Hölder�s inequality as there but employing our

Lemma 4 and taking M > 2pq=[(b+ 1)(q � 2p)]:

Lemma 6 Under Assumptions A(2); B; C; D; E and F (l), for all p > 0 and k � l;

E sup
�2�

���� 1

�2t (�)

@k�2t (�)

@�i1 :::@�ik

���� p <1; (44)

E sup
�2�

���� 1

��2t (�)

@k��2t (�)

@�i1 :::@�ik

���� p <1: (45)

Proof. Take i1 � i2 � ::: � ik: First assume i1 � 3; whence, for given k and i1; :::ik

@k�2t (�)

@�i1 :::@�ik
=

1X
j=1

�j(�)x
2
t�j(�);

where �j(�) = @k j(�)=@� i1�2:::@� ik�2. Now�����
1X
j=1

�j(�)x
2
t�j(�)

����� � 2
1X
j=1

���j(�)�� (x2t�j + �2);
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so using Lemma 1���� 1

�2t (�)

@s�2t (�)

@�i1 :::@�ik

���� � 2
P1

j=1

���j(�)�� x2t�j
��2t (�)

+K
1X
j=1

���j(�)�� :
It su¢ ces to take p > 1: By Hölder�s inequality

1X
j=1

���j(�)�� x2t�j �
( 1X
j=1

���j(�)��p=�  j(�)1�p=�x2t�j
)�=p( 1X

j=1

 j(�)x
2
t�j

)1��=p
;

so (P1
j=1

���j(�)�� x2t�j
��2t (�)

)p
� K

1X
j=1

���j(�)��p  j(�)��p jxt�jj2� :
By Assumption F (l), for all � > 0;

sup
�2�

���j(�)��p  j(�)��p � K sup
�2�

 j(�)
���p � Kj�(d+1)(���p):

Since �(d+ 1) > 1, we may choose � such that (d+ 1)(�� p�) > 1. Thus

E sup
�2�

(P1
j=1

���j(�)�� x2t�j
��2t (�)

)p
<1:

The above proof implies that also

sup
�2�

( 1X
j=1

���j(�)��
)p

<1;

whence the proof of (44) with i1 � 3 is concluded. Next take i1 = 2: If i2 > 2

@k�2t (�)

@�i1 :::@�ik
= �2

1X
j=1

�j(�)xt�j(�); (46)

where now �j(�) = @k�1 j(�)=@� i2�2:::@� ik�2; whilst if i2 = 2; i3 > 2

@k�2t (�)

@�i1 :::@�ik
= �2

1X
j=1

�j(�);
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where now �j(�) = @k�2 j(�)=@� i3�2:::@� ik�2. In the �rst of these cases the proof is

seen to be very similar to that above after noting that by the Cauchy inequality (46)

is bounded by

K

( 1X
j=1

���j(�)�� x2t�j 1X
j=1

���j(�)��
)1=2

+K
1X
j=1

���j(�)�� ;
whilst in the second it is more immediate; we thus omit the details. We are left with

the cases i1 = i2 = i3 = 2 and i1 = 1; both of which are trivial. The details for (45)

are very similar (the truncations in numerator and denominator match), and are thus

omitted.

De�ne

gt(�) = ut(�)u
0
t(�); GT (�) = T�1

TX
t=1

gt(�):

Lemma 7 For some � > 0, under Assumptions A(2 + �); B; C; D; E and F (1),

sup
�2�

jQT (�)�Q(�)j ! 0 a:s: as T !1; (47)

and Q(�)is continuous in �. If also Assumption F (2) holds,

sup
�2�

kGT (�)�G(�)k ! 0 a:s: as T !1; (48)

and G(�) is continuous in �. If also Assumption F (3) holds,

sup
�2�

kHT (�)�H(�)k ! 0 a:s: as T !1; (49)

and H(�) is continuous in �.

Proof. To prove (47), note �rst that by Lemmas 1, 2, 3 and 5

sup
�
E jq0(�)j � sup

�
E
��log �20(�)��+ sup

�
E�0(�) <1:
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Thus by ergodicity

QT (�)! Q(�) a:s:;

for all � 2 �. Then uniform convergence follows on establishing the equicontinuity

property

supe�:ke���k<"
���QT (~�)�QT (�)

���! 0; a:s:;

as "! 0, and continuity of Q(�). By the mean value theorem it su¢ ces to show that

sup
�





@QT (�)@�





+ sup
�





@Q(�)@�





 <1; a:s:;

which, by Lòeve (1977, p. 121) and identity of distribution, is implied byEsup
�
ku0(�)k <

1. By the de�nition of ut(�); and x2t (�) � K(x2t + 1); k�t(�)k � 2(jxtj+ 1); we have

kut(�)k � K

�
k� t(�)k

�
1 + "2t

�2t
�2t (�)

�
+ j"tj

�t
�t(�)

+ 1

�
:

Thus E sup� ku0(�)k is bounded by a constant times

Esup
�
k� 0(�)k+

�
Esup

�

�
�20
�20(�)

�p�1=p �
Esup

�
k� 0(�)kp=(p�1)

�1�1=p
+Esup

�

�
�0
�0(�)

�
+ 1

for all p > 1. On choosing p < 1 + �=2, this is �nite, by Lemmas 5 and 6. (Our use

of Lemmas 5 and 6 is similar to Berkes, Horvath and Kokoszka�s (2003) use of their

Lemmas 5.1 and 5.2 in the GARCH(n;m) case.) This completes the proof of (47).

Then (48) and (49) follow by applying analogous arguments to those above, and so

we omit the details; indeed (48) and (49) are only used in the proof of consistency

of �GT (�̂T ), �HT (�̂T ) for G0; H0, where convergence over only a neighbourhood of �0

would su¢ ce.

Lemma 8 Under Assumptions A(2 + �); B; C; D; E and F (1),

sup
�2�

��QT (�)� �QT (�)
��! 0 a:s: as T !1: (50)
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If also Assumption F (2) holds,

sup
�2�



GT (�)� �GT (�)


! 0 a:s: as T !1: (51)

If also Assumption F (3) holds,

sup
�2�



HT (�)� �HT (�)


! 0 a:s: as T !1: (52)

Proof. We have Q̂T (�)�QT (�) = AT (�) +BT (�); where

AT (�) = T�1
TX
t=1

ln

�
��2t (�)

�2t (�)

�
; BT (�) = T�1

TX
t=1

x2t (�)
�
���2t (�)� ��2t (�)

	
:

Because

�2t (�) = ��
2
t (�) +

1X
j=0

 j+t(�)x
2
�j(�);

ln(1 + x) � x for x > 0, and �2t (�) � !L > 0, it follows that

jAT (�)j � KT�1
TX
t=1

�
�2t (�)� ��2t (�)

	
� KT�1

TX
t=1

1X
j=t

 j(�)x
2
t�j(�)

� KT�1
1X
t=0

(
t+TX
j=t+1

 j(�)

)
x2�t(�):

Now from (7)

sup
�2�

t+TX
j=t+1

 j(�) � K
t+TX
j=t+1

j�d�1 � Kmin(t+ 1; T )(t+ 1)�d�1:

Thus

sup
�
AT (�) � KT�1

TX
t=0

(t+ 1)�d(x2�t + 1) +K

1X
t=T

t�d�1(x2�t + 1): (53)

From cr-inequality, (9) and (10),
P1

t=1(t + 1)
�d�1x2�t has �nite �-th moment, and

thus, by Loève (1977, p.121), is a.s: �nite. Thus the second term of (53) tends to
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zero a.s. as T ! 1 whilst the �rst does so for the same reasons combined with the

Kronecker lemma. Next

jBT (�)j � KT�1
TX
t=1

�t(�)

1X
j=t

 j(�)x
2
t�j(�)

� KT�1
TX
t=1

�t(�)
1X
j=t

j�d�1(x2t�j + 1): (54)

From previous remarks,
P1

j=t j
�d�1(x2t�j + 1)! 0; a.s: Also, for each �, a.s.

T�1
TX
t=1

�t(�)! E�0(�) � K

�
E

�
�20
�20(�)

�
+ 1

�
� K

by ergodicity and Lemma 5. Thus (54) ! 0 a.s. by the Toeplitz lemma. The

convergence is uniform in � because, from the proof of Lemma 7, for all � 2 �;

sup
~�:k~���k<"




�0(~�)� �0(�)



! 0 a:s:;

as " ! 0. This completes the proof of (50). We omit the proofs of (51) and (52) as

they involve the same kind of arguments.

Lemma 9 For some � > 0; under Assumptions A(2 + �); B; C; D;E , F (1) and

G; M(�) is �nite and positive de�nite for all � 2 �.

Proof. Fix � 2 �. Finiteness of M(�) follows from Lemma 6. Positive de�niteness

follows (by an argument similar to that of Lumsdaine (1996) in the GARCH(1; 1)

case) if, for all non-null (r + 2) � 1 vectors �, �0M(�)� = Ef�0� 0(�)g2 > 0, that is,

that

�0� 0(�)�
2
0(�) 6= 0 a:s: (55)
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since 0 < �20(�) <1 a.s. De�ne

� t!(�) =
@

@!
ln�2t (�) = ��2t (�);

� t�(�) =
@

@

ln�2t (�) = �2��2t (�)

1X
j=1

 j(�)xt�j(�);

� t�(�) =
@

@�
ln�2t (�) = ��2t (�)

1X
j=1

 
(1)
j (�)x

2
t�j(�);

so that � t(�) = (� t!(�), � t�(�), � 0t�(�))
0. Write � = (�1; �2; �

0
3)
0, where �1 and �2 are

scalar and �3 is r� 1. Consider �rst the case �1 = �2 = 0, �3 6= 0. Suppose (55) does

not hold. Then we must have
1X
j=1

�03 
(1)
j (�)x

2
t�j(�) = 0; a:s:

If �03 
(1)
1 (�) 6= 0 it follows that

(�t�1"t�1 + �0 � �)2 = �
n
�03 

(1)
j (�)

o�1 1X
j=2

�03 
(1)
j (�)x

2
�j(�): (56)

Since �t�1 > 0 a.s. the left side involves the non-degenerate random variable "t�1,

which is independent of the right side, so (56) cannot hold. Thus �03 
(1)
j (�) = 0.

Repeated application of this argument indicates that, for all �, �03 
(1)
j (�) = 0, j =

1; :::; jr(�). This is contradicted by Assumption G, so (56) cannot hold. Next consider

the case �1 = 0, �2 6= 0, �3 = 0. If (56) does not hold we must have
1X
j=1

 j(�)xt�j(�) = 0; a:s: (57)

Let k be the smallest integer such that  k(�) 6= 0. Then (57) implies

"t�k = ��1t�k(�)

(
�� �0 �  �1k (�)

1X
j=k+1

 j(�)xt�j(�)

)
:

But the left side is nondegenerate and independent of the right side, so (57) cannot

hold. Next consider the case �1 = 0, �2 6= 0, �3 6= 0. If (55) is not true then, taking
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�2 = 1, we must have

1X
j=1

n
�03 

(1)
j (�)xt�j(�)� 2 j(�)

o
xt�j(�) = 0; a:s: (58)

Let k be the smallest integer such that either �03 
(1)
k (�) 6= 0 or  k(�) 6= 0; the preceding

argument indicates that there exists such k. Then we haven
2 k(�)� �03 

(1)
k (�)(�t�k"t�k + �0 � �)

o
f�t�k"t�k + �0 � �g

=
1X

j=k+1

n
�03 

(1)
j (�)xt�j(�)� 2 j(�)

o
xt�j(�); a:s:

The left side is a.s. non-zero and involves the non-degenerate random variable "t�k;

which is independent of the right side, so (58) cannot hold. We are left with the

cases where �1 6= 0: Taking �1 = �1 and noting that �2t (�)� t!(�) � 1, the preceding

arguments indicate that there exist no �2 and �3 such that

�2�
2
t (�)� t�(�) + �03�

2
t (�)� t�(�) = 1; a:s:

Lemma 10 For some � > 0; under Assumptions A(2 + �); B; C; D;E, F (1) and H,

inf
�2�
� 6=�0

Q(�) > Q(�0):

Proof. We have

Q(�)�Q(�0) = E

�
�20
�2(�)

� ln
�

�20
�2(�)

�
� 1
�
+ (�� �0)

2E

�
1

�20(�)

�
:

The second term on the right hand side is zero only when � = �0 and is positive

otherwise. Because x � lnx � 1 � 0 for x > 0, with equality only when x = 1, it

remains to show that

ln�20(�) = ln�
2
0 a:s:, some � 6= �0: (59)
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By the mean value theorem, (59) implies that (� � �0)
0� 0(��) = 0 a.s., for � 6= �0 and

some �� such that


�� � �0



 � k� � �0k. But by Lemma 9 there is no such ��.
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