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Abstract 

 
 

Asymptotic inference on nonstationary fractional time series models, including 
cointegrated ones, is proceeding along two routes, determined by alternative 
definitions of nonstationary processes. We derive bounds for the mean squared error 
of the difference between (possibly tapered) discrete Fourier transforms under two 
regimes. We apply the results to deduce limit theory for estimates of memory 
parameters, including ones for cointegrated errors, with mention also of implications 
for estimates of cointegrating coefficients. 
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1. INTRODUCTION

The treatment of pre-sample observations has long been an issue in time series

analysis. In stationary autoregressive (AR) models, different initial value conventions

lead to parameter estimates which typically share the same first-order asymptotic

properties but have different finite sample ones. In computer generation of such series

the exact autocovariance structure is achievable, but often zeros or the sample mean

initiate the series, with early observations then thrown away. Different conventions

have also been followed in nonstationary series with a unit AR root. In all these

situations the treatment of only a few pre-sample observations (as many as the AR

order) is in question. In stationary fractional processes, whose AR and moving average

representations have infinite degree, infinitely many pre-sample values have to be

chosen, so the potential divergence between rival methods of computer generation,

and between rival parameter estimates, is greater, even though first-order asymptotic

properties are again robust.

In the above examples there is often consensus about the underlying process, and

the differences in pre-sample treatment appear only in the working model employed

in obtaining parameter estimates for a finite stretch of data, for example manifesting

some form of truncation (as in many “time domain” estimates) or approximating

by a circulant (as in “frequency domain” ones). In nonstationary fractional series,

however, at least two notably different definitions have been employed. To describe

these, define

∆−a =
∞P
j=0

φj(a)L
j , φj(a) =

Γ(j + a)

Γ(a)Γ(j + 1)
, (1.1)

where L is the lag operator, ∆ = 1−L is the difference operator and Γ is the Gamma
function with Γ(a) = ∞ for a = 0,−1, ..., and Γ(0)/Γ(0) = 1. Let {ηt, t = 0,±1, ...}
be a zero-mean covariance stationary process, with spectral density f(λ) that is
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bounded and bounded away from zero; we call ηt a short-memory process. For

d ∈ [−bd, bd)

ζt = ∆−dηt, t = 0,±1, ..., (1.2)

is thus covariance stationary and, for d > −bd, invertible, having long memory when
d > 0, negative memory when d < 0, and short memory when d = 0. Define the

truncated ζ t and ηt processes

ζ#t = ζt1(t ≥ 1), η#t = ηt1(t ≥ 1), t = 0,±1, ...., (1.3)

where 1 is the indicator function. For integer q ≥ 0

Xt = ∆−qζ#t , t = 0,±1, ..., (1.4)

is called a Type I I(q + d) process and

Yt = ∆−q−dη#t , t = 0,±1, ..., (1.5)

is called a Type II I(q + d) process.

When d = 0, (1.2) and (1.3) indicate that ζ#t ≡ η#t , and thence from (1.4) and (1.5),

Xt ≡ Yt, so the two definitions are equivalent in non-fractional series, that have one or
more unit roots (q ≥ 1) or are stationary (q = 0). The definitions differ when d 6= 0.
With q ≥ 1, the Type I definition has been used by Sowell (1990), Hurvich and Ray
(1995), Chan and Terrin (1995), Jeganathan (1999), Velasco (1999a,b), Marinucci

(2000), Velasco and Robinson (2000) and others, whilst the Type II definition has

been used by Robinson and Marinucci (2001), Kim and Phillips (2000) and others.

(Robinson and Marinucci’s (2001) I(q+ d) definition involves weights that generalize

(1.1).) Type I and Type II processes were compared by Marinucci and Robinson

(1999), who observed that when q = 0

E(Xt − Yt)2 = O(t2d−1)→ 0 as t→∞, (1.6)
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and noted, from work of Mandelbrot and Van Ness (1968), Davydov (1970), Gorodet-

skii (1977) (in connection with Xt), and of Akonom and Gourieroux (1987), Silveira

(1991) and Marinucci and Robinson (2000) (in connection with Yt) that empirical

processes formed from Xt and Yt converge to different forms of fractional Brown-

ian motion; these latter were respectively termed “Type I” and “Type II” fractional

Brownian motion by Marinucci and Robinson (1999), and our designation of Xt and

Yt corresponds.

The (albeit slow) convergence in (1.6) suggests that the choice between Xt and

Yt (generated from the same ηt sequence) may not always impact on asymptotic

properties. This would be a desirable outcome as there seems no way of reliably

determining whether an observed time series is Type I or Type II. Information on the

“distance” between Xt and Yt is useful in bounding the difference between limiting

behaviour of statistics under the two regimes (1.4) and (1.5). If the limit distribution

under one regime is already known, and this difference is of suitably small order, we

can conclude the limit distribution under the other regime, without having to derive

it independently. It seems more useful to consider the difference between discrete

Fourier transforms (DFTs) of Xt and Yt, than Xt − Yt itself. Frequency-domain

methods have loomed large in memory parameter estimation. For semiparametric

models (where, in the stationary case, the spectrum of a long memory process is

parameterized only near zero frequency, or the autocovariance function only at long

lags) log periodogram and local Whittle estimates have come to the fore, due to

their intuitive appeal, computational simplicity and desirable asymptotic properties,

being asymptotically normal for all d with simple, d-free, asymptotic variance. For

parametric models, a form of Whittle estimation has computational advantages due

to the fast Fourier transform and the convenient explicit form of the spectrum for

many processes, can deal readily with mean-correction, and is
√
n-consistent and

asymptotically normal, with limit variance matrix largely uninfluenced by the parent
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innovation distribution, and asymptotically efficient in the stationary Gaussian case.

Tapering of the data (see e.g. Hurvich and Ray, 1995) has helped in extending these

methods to cover nonstationary series. DFTs of the data, or tapered versions, are

the basic building blocks of frequency-domain methods.

The following section bounds the mean squared error of the difference between the

DFTs of Xt and Yt, and of tapered versions. Section 3 applies our results to show that

tapered Whittle estimates for parametric nonstationary Type I models investigated

by Velasco and Robinson (2000) can have the same limit distribution in the Type II

case. This helps to verify unprimitive conditions on rates of convergence of memory

parameter estimates that were employed by Robinson and Hualde (2003) in deriving

the limit behaviour of cointegration estimates in the presence of unknown memory.

These conditions include ones on the memory of (possible asymptotically stationary)

cointegrating errors, which can only be estimated from residuals, and Section 4 derives

the limiting distribution of such memory estimates, for both Type I and Type II

processes. The concluding Section 5 briefly discusses some other applications of our

results. Proofs appear in four appendices.

2. THE DISTANCE BETWEEN DISCRETE FOURIER

TRANSFORMS

With C throughout denoting a generic positive constant, we call ht = h((t−0.5)/n),
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t = 1, ..., n, a taper of (integer) order p ≥ 0 if

h(1− t) = h(t), 0 ≤ t ≤ 0.5,
|h(t)| ≤ Ctp, 0 ≤ t ≤ 0.5, (2.1)¯̄
∆kht

¯̄ ≤ C
tp−k

np
, 1 ≤ k ≤ p, k + 1 ≤ t ≤ [(n+ 1)/2], (2.2)

nP
t=p+1

¯̄
∆p+1ht

¯̄ ≤ Cn−p, (2.3)

nP
t=1

h2t ≥ n/C.

The simplest example of a taper of order p = 0 is

ht ≡ 1, (2.4)

corresponding to no tapering at all; for simplicity we take p = 0 to imply (2.4).

Tapers of any chosen order p > 0 can be generated by the proposal of Kolmogorov

(see Zhurbenko (1986)): when n is of form n = (p + 1)(r − 1) + 1 we choose ht
proportional to the coefficient of zt−1 in the expansion of {(1− zr)/(1− z)}p+1. Then
(2.4) occurs when p = 0 (so r = n), but for p = 1 we have weights ht ∝ t, and for
general p, ht ∝ Γ(p+ t)/{Γ(t)Γ(p+1)}, 1 ≤ t ≤ [(n+1)/2]. As p increases, ht decays
more and more smoothly towards zero as t approaches 1 and n.

Define the tapered DFTs

wX(λ) =

µ
2π

nP
t=1

h2t

¶−bd nP
t=1

htXte
itλ, wY (λ) =

µ
2π

nP
t=1

h2t

¶−bd nP
t=1

htYte
itλ. (2.5)

When q = 0, untruncated, stationary, versions of Xt, Yt have spectral densities pro-

portional to λ−2d as λ → 0+, whilst when q > 0 we have a “pseudo spectrum”

proportional to λ−2d−2q as λ → 0+. Thus, we expect appropriately normalized ver-

sions of (2.5) to be λd+qwX(λ), λ
d+qwY (λ).

Theorem When p = q = 0, d ∈ (−bd, bd],

E
©
λ2d |wY (λ)− wX(λ)|2

ª ≤ C |log λ|1(d=−bd) (nλ)−1, 0 < λ ≤ π. (2.6)
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When p ≥ max(q, 1), q ≥ 0, d ∈ (−bd, bd],

E
©
λ2d+2q |wY (λ)− wX(λ)|2

ª ≤ C(log n)1(d=−bd)(nλ)2d−2, 0 < λ ≤ π. (2.7)

The proof is in Appendix B, employing a sequence of lemmas established in Ap-

pendix A.

Remark 1 In connection with the restriction on λ, note that |wY (λ)− wX(λ)|2 is
even and periodic of period 2π.

Remark 2 The Theorem holds under mild conditions on ηt (indeed it does not use

the property that f(λ) is everywhere positive, so holds also if Xt, Yt are I(c), c < q+d)

but much stronger conditions are needed in the applications that follow.

Remark 3 The difference between DFTs seems intuitively a more meaningful mea-

sure of distance than the raw difference Xt − Yt (cf (1.6)) because DFTs can be
approximately uncorrelated across frequencies that can be suitably separated.

Remark 4 We can discuss (2.6) in relation to approximations to the variance of the

normalized DFT (e.g. Robinson, 1995a) for Type I stationary processes, in particular

for |d| < bd , f(λ)−1λ2dE |wX(λ)|2 = 1+O ((nλ)−1 log(nλ+ 1)) so (2.6) suggests that
wY (λ) approximates the leading term of wX(λ) if nλ/ log n→∞ as n→∞..

Remark 5 For q > 0 the above Type I variance approximation worsens for the

untapered DFT (see e.g. Velasco and Robinson, 2000, Theorem A.1) but an improve-

ment is achieved by tapering (see e.g. Velasco and Robinson, 2000, Theorem A.3).

Their error bound can be dominated by a local smoothness property of f (unlike ours

for the difference, so this effect apparently cancels). Ignoring this, their approxima-

tion error for the variance of the normalized tapered DFT is O
¡
(nλ)2d−2 log(nλ+ 1)

¢
when p = q, |d| < bd, so tapering helps here to an extent similar to that in (2.7).

Both results improve when d ↓ −bd and worsen when d ↑ bd.
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Remark 6 These variance approximations were actually derived only for Fourier

frequencies λ = λj = 2πj/n, j = 1, 2, ..., [n/2]. For such λ the bounds in (2.6) and

(2.7) become O(j−1) and O(j2d−2) respectively for |d| < bd. It is dealing with λ close

to zero (i.e. j = o(n)) that poses a distinctive difficulty in asymptotics for fractional

series, but with λ bounded away from zero the bounds are O(n−1) and O(n2d−2).

Remark 7 It is evident how multivariate extensions of Xt and Yt can be formed, per-

haps with memory parameters varying across elements, but our Theorem applies, in

element-by-element fashion, to multivariate series, so it could be used in multivariate

extensions of Propositions 1-4 of Sections 3 and 4.

Remark 8 The Theorem continues to hold if both Xt and Yt are corrupted by the

same trend.

Remark 9 Our Type I and Type II definitions are only two of several possibilities,

stressed here for simplicity of exposition, for their relatively marked discrepancy, and

for their popularity. It is easily shown that the Theorem holds if Yt is replaced

by ∆−q−d{ηt1(t ≥ −τ)} for τ > 0, indeed if τ increases fast enough relative to n

the results can be improved. In empirical work, Hualde and Robinson (2001) found

evidence of sensitivity to choice of τ .

3. ESTIMATION OF MEMORY PARAMETERS FROM RAW

DATA

Parametric models are important in describing time series of moderate length,

and in prediction. Suppose we know a function `(λ; θ(−)) of λ and the (a − 1) × 1
vector θ(−), such that

R π

−π log `(λ; θ
(−))dλ = 0 for all θ(−) and, for f(λ; θ(−), σ2) =

(σ2/2π) `
³
λ; θ(−)

´
and some unknown σ20 > 0, θ

(−)
0 , we have f(λ) = f

³
λ; θ

(−)
0 , σ20

´
.
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For example, f
³
λ; θ(−), σ2

´
can be a “standard parameterization” of an ARMA spec-

trum, where, with δ0 = q + d,
¯̄
1− eiλ¯̄−2δ0 f ³λ; θ(−)0 , σ20

´
is the spectrum of a frac-

tional ARIMA process when q = 0 and the “pseudo-spectrum” when q > 0. The

processes in question are Type I, but corresponding Type II processes are defined by

employing the same f(λ) and δ0 with respect to (1.5). Some attempts at asymp-

totic theory for Whittle-type estimates of θ0 =
³
δ0, θ

(−)0
0

´0
(for Type II processes)

when q is unknown are incomplete because they did not demonstrate uniform con-

vergence of the objective function over a suitably broad interval of δ-values. Velasco

and Robinson (2000) (hereafter VR) achieved this in case of Type I processes using

tapering, establishing
√
n-consistency and asymptotic normality (and thus standard

asymptotics, as foreshadowed in Robinson’s (1994) treatment of score testing in non-

stationary fractional models based on time- and frequency-domain approximations to

a Gaussian likelihood).

We apply the Theorem to show that the same results hold in case of a corresponding

Type II process. Define θ =
³
δ, θ(−)

0
´0
, k(λ; θ) =

¯̄
1− eiλ¯̄−2δ `(λ; θ(−)). We estimate

θ0 by θ̃ = argminΘ Q̃n(θ), where Θ = [∇1,∇2] × Θ(−) for ∇1 > −bd, ∇2 < ∞ and

Θ(−) a compact subset of Ra−1, and

Q̃n(θ) =
2π(p+ 1)

n

P
j(p)

Ĩ(λj)

k(λj; θ)
, Ĩ(λ) = |wY (λ)|2 ,

where
P

j(p) denotes a sum over j = p+1, 2(p+1), ..., n− p+1, p being the order of
the taper in wY . The estimate studied by VR, based on Xt, is θ̂ = argminΘQn(θ),

where

Qn(θ) =
2π(p+ 1)

n

P
j(p)

I(λj)

k(λj; θ)
, I(λ) = |wX(λ)|2 .

Both Qn and Q̃n result from concentrating out σ2 from tapered frequency-domain

approximations to a Gaussian likelihood. As in VR, the skipping of frequencies when

p > 0 avoids correlation across neighbouring Fourier frequencies induced by tapering,
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and it corrects for corruption of Xt or Yt by a polynomial trend of degree no greater

than p.

The asymptotic theory of VR requires regularity conditions which are relatively

standard and are not repeated here - they permit Yt to be a Gaussian fractional

ARIMA for example. Our conditions on h imply VR’s, noting that their p is our

p+ 1.

Proposition 1 If h is of order p ≥ q then under Assumptions A.1-A.4 of VR,

θ̃ →p θ0 as n→∞.

Appendix C contains the proof of this and of the next proposition, which indicates

that θ̃ has the same limit distribution as VR’s θ̂.

Define

Σ =

Z π

−π

½
∂

∂θ
log k(λ; θ0)

¾½
∂

∂θ0
log k(λ; θ0)

¾
dλ,

Φp = lim
n→∞

½
nP
t=1

h2t

¾−2P
j(p)

½
nP
t=1

h2t cos tλj

¾2
.

Proposition 2 If h is of order p ≥ 1 for q = 0 or of order p ≥ q for q > 0,

then under Assumptions A.1-A.4 and A.6-A.9 of VR, as n → ∞ nbd(θ̃ − θ0) →d

N (0, 4π(p+ 1)ΦpΣ
−1) .

4. ESTIMATION OF MEMORY PARAMETERS FROM

RESIDUALS

An important application of parametric memory estimation arises in fractional

cointegration analysis, where the memory of observables and/or cointegrating errors

is unknown and possibly fractional, and limitations on the length of macroeconomic
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series support parametric modelling of dynamics. Consider the “Type II” cointegrated

system

yt = νxt +∆−δ0η#1t, xt = ∆−γ0η#2t, (4.1)

where η#it = ηit1(t ≥ 1), i = 1, 2, and (η1t, η2t) is a bivariate covariance stationary pro-
cess with spectral density matrix F (λ) that is at least bounded and positive definite

for all λ, whilst

δ0 ≥ 0, γ0 − δ0 > bd; (4.2)

ν is the unknown cointegrating coefficient. Robinson and Hualde (2003) established

desirable asymptotic properties for estimates of ν that have the apparently optimal

convergence rate nγ0−δ0 , in the presence of unknown γ0, δ0 (whose meaning they

reverse). If the second condition in (4.2) is reversed the optimal rate appears to be

nbd and asymptotic inference is substantially affected. Robinson and Hualde (2003)

assumed F (λ) is parametric, depending on an unknown vector φ0, e.g. (η1t, η2t) is a

bivariate ARMA. The asymptotic properties of their estimates of ν require certain

rates of convergence of γ0, δ0,φ0;
√
n-consistency suffices, so Proposition 2 implies

the desired
√
n-consistency of the estimates of γ0 and the parameters explaining

autocorrelation in η2t. However, Proposition 2 does not apply to estimates of δ0 or

parameters explaining autocorrelation in η1t because ν is unknown, so Yt = yt − νxt

is unobservable. Given a preliminary estimate ν̃, estimates can be based on the Ŷt =

yt−ν̃xt. Assuming the spectral density of η1t can be parameterized as σ2`(λ; θ(−))/2π,
then with k(λ; θ) as in Section 3 we consider

θ̄ = argmin
Θ
Q̄n(θ) Q̄n(θ) =

2π(p+ 1)

n

P
j(p)

Î(λj)

k(λj ; θ)
,

Î(λ) = |wŶ (λ)|2 , wŶ (λ) = (2πn)
−bd nP

t=1

htŶte
itλ.
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Denote by r the positive integer such that −bd ≤ γ0 − r < bd. In employing as-

sumptions of VR in the following propositions we mean that their Xt denotes the

corresponding Type I process to the Type II process Yt = yt − νxt.

Proposition 3 If h is of order p ≥ r, and

ν̂ − ν = Op(n
δ0−γ0+ρ), any ρ > 0, (4.3)

then under (4.1) and (4.2) and Assumptions A.1-A.4 of VR, θ̄ →p θ0 as n→∞.

Proposition 4 If h is of order p ≥ r and (4.3) holds, then under (4.1) and (4.2)
and Assumptions A.1-A.4 and A.6-A.9 of VR, nbd(θ̄−θ0)→d N (0, 4π(p+ 1)ΦpΣ

−1)

as n→∞.

The proofs are in Appendix D. Because r > γ0 − bd > δ0 implies r ≥ q, the

degree of tapering required may be greater than in Propositions 1 and 2, but versions

of Propositions 1 and 2 applying to estimates of γ0, using xt, would entail p ≥ r,

suggesting that the same taper be used in both equations of (4.1). Robinson and

Marinucci (2001, Propositions 6.1 and 6.2) showed that if γ0 + δ0 ≥ 1 (4.3) holds

when ν̃ is the least squares estimate ν̃LS, and that if γ0 + δ0 < 1 it can hold when ν̃

is the narrow-band least squares estimate ν̃NBLS if the number of Fourier frequencies

used increases slowly enough, say like log n. The strength of (4.3) in part reflects

the need to deal with a desirably large admissible parameter set in the consistency

proof. We may infer from Propositions 1-4 that Propositions 3 and 4 hold for a Type

I version of the cointegration model (4.1), applying the Theorem in the opposite

direction.

5. FINAL COMMENTS

The estimation of ν in (4.1) is one area in which Type I and II processes may

lead to different limit distributions. For untapered estimates in the Type I case
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with 0 ≤ δ0 < bd, 1 ≤ γ0 < 3/2, Marinucci (2000) obtained the same rate of

convergence as Robinson and Marinucci (2001) did under Type II, but a different

limit distribution (due to the different forms of fractional Brownian motion). Over the

wider region γ0+ δ0 > 1, limit distributions of tapered ν̃LS and ν̃NBLS differ between

Type I and Type II processes (while converging at the same rate, that for untapered

estimates), but (using the Theorem) are identical when γ0 + δ0 < 1. The Theorem

should also be useful in other time series regression settings. Returning to memory

parameter estimation, the results of Robinson (1995a,b) and Velasco (1999a,b) for

semiparametric estimates under Type I should apply, via the Theorem, to Type II

also.
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APPENDIX A: TECHNICAL LEMMAS

The proof of the Theorem is facilitated by the following lemmas.

Lemma 1 Defining, for t > 1,

bt`(r, d) =
t−1P
k=0

φk(r)φt+`−k(d),

we have the representations

Xt =
t−1P̀
=0

φ`(q + d)ηt−` +
∞P̀
=0

bt`(q, d)η−`, Yt =
t−1P̀
=0

φ`(q + d)ηt−`,

so that

Xt − Yt =
∞P̀
=0

bt`(q, d)η−`. (A.1)

Proof: The representation of Yt is immediate given (1.1), (1.3) and (1.5) and the

identity ∆a∆b = ∆a+b. From (1.2) ζt =
P∞

j=0 φj(d)ηt−j , so that

Xt =
t−1P
k=0

φk(q)
∞P
j=0

φj(d)ηt−j−k

=
t−1P̀
=0

P̀
j=0

φj(q)φ`−j(d)ηt−` +
∞P̀
=t

t−1P
j=0

φj(q)φ`−j(d)ηt−`,

which gives the desired result, on noting that φj(a+b) =
Pj

k=0 φk(a)φj−k(b). ¤

Lemma 2

bt`(r − 1, d) = bt`(r, d)− bt−1,`(r, d), t > 1. (A.2)

Proof: The right hand side of (A.2) is

φt+`(d) +
t−1P
k=1

©
φk(r)− φk−1(r)

ª
φt+`−k(d),
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which, due to (1.1), equals the left side in view of the identity

φk(r − 1) = φk(r)− φk−1(r), k ≥ 1, φ0(r) ≡ 1. ¤

Lemma 3 For t ≥ 1, ` ≥ 0

bt`(r, 0) = 0, r ≥ −1, (A.3)

bt`(−1, d) ≤ C(t+ `)d−2, d 6= 0, (A.4)

bt`(0, d) ≤ C(t+ `)d−1, d 6= 0, (A.5)

and for k ≥ 1,

bt`(k, d) ≤ Ctk−1+d, ` ≤ t, d ≥ 0, (A.6)

≤ Ctk−1(`+ 1)d, ` ≤ t, d < 0, (A.7)

≤ Ctk`d−1, ` > t, d < 1. (A.8)

Proof: The relation (A.3) is immediate, whilst (A.4) and (A.5) follow from Stirling’s

formula. From Lemma 2 and (A.5) we deduce (A.6)-(A.8) when k = 1, and thence,

recursively, when k > 1. ¤

Lemma 4 For a sequence ∆t = ∆
(0)
t , t = 1, 2, ..., define, for integer r ≥ 1,

∆
(r)
t = ∆

(r−1)
t −∆

(r−1)
t−1 , t > r. (A.9)

Then for any integer q ≥ 1
nP
t=1

∆te
itλ =

qP
r=1

g(λ)r
©
∆(r−1)
r −∆(r−1)

n ei(n−r+1)λ
ª

(A.10)

+g(λ)q
n−qP
t=1

∆
(q)
t+qe

itλ, (A.11)
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where g(λ) = eiλ(1− eiλ)−1.

Proof: Define vr(λ) =
Pn−r

t=1 ∆
(r)
t+re

itλ. By summation-by-parts, for r ≥ 1

vr−1(λ) =
n−rP
t=1

n
∆
(r−1)
t+r−1 −∆

(r−1)
t+r

o
D1t(λ) +∆(r−1)

n D1,n−r+1(λ),

where Dst(λ) =
Pt

r=s e
irλ. Noting (A.9), and D1t(λ) = g(λ)(1− eitλ), we have

vr−1(λ) = g(λ)

½
vr(λ)−

n−rP
t=1

∆
(r)
t+r +∆(r−1)

n

¡
1− ei(n−r+1)λ¢¾

= g(λ)
©
vr(λ) +∆(r−1)

r −∆(r−1)
n ei(n−r+1)λ

ª
.

Applying this recursion successively for r = 1, ..., q completes the proof. ¤

Lemma 5 For 1 ≤ s ≤ t ≤ n¯̄̄̄
tP
r=s

∆khre
irλ

¯̄̄̄
≤ C

nk |λ| , 0 < |λ| ≤ π, k = 0, ..., p. (A.12)

Proof: By summation by parts,

tP
r=s

∆khre
irλ = −

t−1P
r=s

∆k+1hrDsr(λ) +∆khtDst(λ).

From Zygmund (1977, p.51)

|Dst(λ)| ≤ C |λ|−1 , O < |λ| ≤ π, (A.13)

so from (2.2) ¯̄̄̄
tP
r=s

∆khre
irλ

¯̄̄̄
≤ C

|λ|
t−1P
r=s

rp−k−1

np
+

C

nk |λ| ≤
C

nk |λ|
for k = 0, ..., p− 1, whilst for k = p (A.12) follows using (2.3). ¤

APPENDIX B: PROOF OF THEOREM

15



The proof for d = 0 is trivial, indeed the left sides of (2.6) and (2.7) are actually

zero. Consider |d| < bd. From (A.1)

nP
t=1

ht (Xt − Yt) eitλ =
∞P̀
=0

η−`w`(q, d), (B.1)

where w`(q, d) =
Pn

t=1 htbt`(q, d)e
itλ. Now (B.1) has mean zero and variance

∞P̀
=0

∞P
m=0

E(η−`η−m)w`(q, d)wm(q, d) =
Z π

−π
f(ω)

¯̄̄̄ ∞P̀
=0

e−i`ωw`(q, d)
¯̄̄̄2
dω

≤ C
Z π

−π

¯̄̄̄ ∞P̀
=0

e−i`ωw`(q, d)
¯̄̄̄2
dω ≤ C

∞P̀
=0

|w`(q, d)|2 . (B.2)

It suffices to show that

∞P̀
=0

|w`(q, d)|2 ≤ Cλ−2d−1, p = q = 0, (B.3)

≤ Cn2d−1λ−2q−2, q ≥ 0, p ≥ max(q, 1). (B.4)

To estimate w`(q, d) when q > 0 we apply Lemma 4, taking ∆t = ∆t` = htbt`(q, d).

We consider first the terms on the right side of (A.10). For sequences ct, dt we may

write ∆r−1(csdt), 1 ≤ r ≤ q, as a linear combination of terms ∆kcs−i∆r−1−kdt−j , for

k = 0, ..., r − 1, and finitely many integers i, j satisfying 0 ≤ i, j ≤ r − 1. Thus

∆
(r−1)
t = ∆

(r−1)
t` = O

µ
r−1P
k=0

¯̄
∆kht

¯̄ ¯̄
∆r−1−kbt`(q, d)

¯̄¶
= O

µ
r−1P
k=0

¯̄
∆kht

¯̄
bt`(q − r + 1 + k, d)

¶
from Lemma 2. From (2.1), (2.2) and Lemma 3,¯̄̄

∆(r−1)
n`

¯̄̄
≤ C

(`+ 1)d

np

r−1P
k=0

nq−r+k ≤ C (`+ 1)
d

np−q+1
, 0 ≤ ` ≤ n, d ≤ 0;

≤ C

np

r−1P
k=0

nq−r+k+d ≤ Cnq−p+d−1, ` > n, d ≥ 0;

≤ C
`d−1

np

r−1P
k=0

nq−r+k+1 ≤ C `
d−1

np−q
, ` > n.

16



Thus for d ≤ 0
∞P̀
=0

∆
(r)2
n` ≤ Cn2(q−p)

½
1

n2

nP̀
=0

(`+ 1)2d +
∞P̀
=n

`2d−2
¾
≤ Cn2(q−p+d)−1,

with the same result for d > 0. Thus from (A.4) and |g(λ)| ≤ C |λ|−1, the contribution
of this term to (B.2) is bounded by Cλ−2qn2d−1, which is bounded by the right sides of

both (B.3) and (B.4). Clearly the contributions of the ∆
(r−1)
r` are of no higher order.

To consider (B.4) for q > 0, and correspondingly for q = 0 with ∆
(0)
t = ∆t, note

that ∆(q)
t is a linear combination of terms ∆kht−i∆q−kbt−j,`(q, d) = ∆kht−ibt−j,`(k, d),

for k = 0, ..., q. For fixed positive, negative or zero i, and n1, n2 satisfying C ≥
n1 ≥ max(1, i + 1), n − C ≤ n2 ≤ min(n, n + i) consider, for 0 ≤ k ≤ q, rk` =Pn2

t=n1
bt`(k, d)∆

kht−ieitλ. We estimate rk` by applying, as appropriate, (2.1), (2.2),

Lemmas 2, 3 and 5, and summation-by-parts. We find that |r0`| is bounded by:
C

λ

n2−1P
t=n1

(t+ `)d−2 +
C(n2 + `)

d−1

λ
≤ C`d−1

λ
, p ≥ 0;

C
nP
t=1

(t+ `)d−1 ≤ C(`+ 1)d, d < 0, p = 0;

C
m−1P
t=n1

(t+ `)d−1 +
C

λ

n2−1P
t=m

(t+ `)d−2 +
C(n2 + `)

d−1

λ

≤ C(m+ `)d + C(m+ `)
d−1

λ
≤ Cλ−d, ` ≤ λ−1, d > 0, p = 0,

(on taking m ∼ 1/λ);
C

λ

n2−1P
t=n1

{|bt+1,`(−1, d)ht−j + bt+1,`(0, d) |∆ht+1−j||}+ C
λ
bn2,`(0, d)hn2−j

≤ C

npλ

n2−1P
t=n1

©
(t+ `)d−2tp + (t+ `)d−1tp−1

ª
+
C(n2 + `)

d−1

λnp

≤ C(`+ 1)d

nλ
, ` ≤ n, d ≤ 0, p ≥ 1;

≤ Cnd−1

λ
, ` ≤ n, d > 0, p ≥ 1;

17



We find that |r1`| is bounded by
C

nλ

n2−1P
t=n1

(t+ `)d−1 +
C(`+ 1)d

nλ
≤ C(`+ 1)

d

nλ
, ` ≤ n, d < 0, p ≥ 1.

We find that |rk`| is bounded by
C`d−1

nkλ

n2−1P
t=n1

tk−1 +
C`d−1

λ
≤ C`d−1

λ
, ` > n, 1 ≤ k ≤ p;

C`d−1

nkλ

P̀
t=1

tk−1 +
C(`+ 1)d

nkλ

n−1P
t=`+1

tk−2 +
(n+ `)d

nλ
≤ C(`+ 1)d

nλ
, ` ≤ n, d < 0, 2 ≤ k ≤ p;

C`d−1

nkλ

P̀
t=1

tk−1 +
C

nkλ

n−1P
t=`+1

tk−2+d +
Cnd−1

λ
≤ Cnd

λ
, ` ≤ n, d > 0, 1 ≤ k ≤ p.

Thus Σ∞`=0r
2
0` is bounded by

C
P
`≤1/λ

(`+ 1)2d +
C

λ2
P
`>1/λ

`2d−2 ≤ Cλ−2d−1, d < 0, p = 0, (B.5)

C
P
`≤1/λ

λ−2d +
C

λ2
P
`>1/λ

`2d+1 ≤ Cλ−2d−1, d > 0, p = 0,

whilst Σ∞`=0r
2
k` is bounded by

C

n2λ2
P̀
≤n
(` + 1)2d +

C

λ2
P̀
>n

`2d−2 ≤ Cn2d−1λ−2, d < 0, 0 ≤ k ≤ p, p ≥ 1;(B.6)
C

n2λ2
P̀
≤n
n2d−2 +

C

λ2
P̀
>n

`2d−2 ≤ Cn2d−1λ−2, d > 0, 0 ≤ k ≤ p, p ≥ 1.

The bounds (B.3) and (B.4) immediately follow. The proof for d = −bd follows much
as above, the bounds for the rk` still holding and (B.5) and (B.6) becoming C |log λ|
and C(log n)(nλ)−2, respectively. ¤

APPENDIX C: PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1: By a standard argument for consistency of implicitly-

defined extremum estimates, for η > 0

P
³°°°θ̃ − θ0

°°° > η
´
≤ P

µ
inf
N̄
R̃n(θ) ≤ 0

¶
, (C.1)
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where N̄ is the complement in Θ of an η-neighbourhood of θ0 and R̃n(θ) = Q̃n(θ)−
Q̃n(θ0). As in Robinson (1995b), when O1 > δ0 − bd write Θ(1)

1 = {δ : ∇1 ≤ δ ≤ ∇2}
and take Θ

(1)
2 to be empty, and otherwise take Θ

(1)
1 = {δ : δ0 − bd+ ε ≤ δ < O2},

Θ
(1)
2 = {δ : O1 ≤ δ < δ0 − bd+ ε}, for ε ∈ (0, bd), so that in either case Θ(1) = {δ :
∇1 ≤ δ ≤ ∇2}. Writing Θ1 = Θ

(1)
1 ×Θ(−), Θ2 = Θ

(1)
2 ×Θ(−) we thus bound (C.1) by

P

µ
inf
N̄∩Θ1

R̃n(θ) ≤ 0
¶
+ P

µ
inf
Θ2
R̃n(θ) ≤ 0

¶
, (C.2)

noting that θ0 ∈ Θ1. Writing Rn(θ) = Qn(θ) − Qn(θ0) as S(θ) − U(θ), with the
definitions in the proof of Theorem 1 of VR, and defining also

an = inf
N̄∩Θ1

Rn(θ)− inf
N̄∩Θ1

R̃n(θ), bn = sup
Θ1

¯̄̄
Qn(θ)− Q̃n(θ)

¯̄̄
,

we bound the first term of (C.2) by

P

µ
sup
Θ1

|U(θ)|+ an ≥ inf
N̄∩Θ1

S(θ)

¶
. (C.3)

We have an ≤ 2bn, on taking infima over N̄ ∩ Θ1 on both sides of the inequality

Qn(θ) ≤ Q̃n(θ) + bn, which holds for all θ ∈ Θ1. On the other hand, VR show

in the ”First Step” of the proof of their Theorem 1 that supΘ1 |U(θ)| →p 0 and

infN̄∩Θ1 S(θ) > 0. It follows that (C.3) is o(1) if bn is op(1). From the triangle

inequality,

|IY (λ)− IX(λ)| ≤ |u(λ)|2 + 2 |u(λ)| |wX(λ)| , (C.4)

where u(λ) = wY (λ)− wX(λ). Applying also the Cauchy inequality,

bn ≤ sup
Θ
Pn(θ) + 2

½
sup
Θ
Pn(θ)sup

Θ
Qn(θ)

¾bd
,

where

Pn(θ) =
2π(p+ 1)

n

X
j(p)

|u(λj)|2
k(λj; θ)

.
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Now

sup
Θ
Pn(θ) ≤ C

n

X
j(p)

¯̄
λδ0j u(λj)

¯̄2
λ2ε−1j .

From the Theorem, the right hand side has expectation bounded by

C

n

nP
j=1

(log j)j−1
µ
j

n

¶2ε−1
≤ Cn−2ε

∞P
j=1

(log j)j2ε−2 → 0,

as n → ∞. The ”First Step” of the proof of Theorem 1 of VR shows that Qn(θ)

converges uniformly on Θ1 to a bounded limit. Thus bn = op(1). To deal with the

second term in (C.2), the triangle inequality gives

inf
Θ2
Q̃n(θ) ≥ 1

n

P
j(p)

Ĩ(λj)λ
2(δ0+ε−bd)
j

≥ 1

n

P
j(p)

I(λj)λ
2(δ0+ε−bd)
j (C.5)

−
¯̄̄̄
¯ 1n Pj(p)

n
Ĩ(λj)− I(λj)

o
λ
2(δ0+ε−bd)
j

¯̄̄̄
¯ . (C.6)

The ”Second Step” of the proof of Theorem 1 of VR shows that (C.5) tends in

probability to a limit that can be made arbitrarily large on letting ε → 0, whereas

the above proof has shown that (C.6) is op(1). Since θ0 ∈ Θ1 it follows from the

above proof and the ”First Step” of the proof of Theorem 1 of VR that Q̃n(θ0) has

a finite probability limit. Thus the second probability in (C.2) is o(1) as n → ∞.
¤

Proof of Proposition 2: By the usual mean value theorem argument, nbd(θ̃−θ0) =

Ξ̃−1n ξ̃n, where

ξ̃n = n
−bdP

j(p)

∂

∂θ
k(λj; θ0)

−1Ĩ(λj),

and Ξ̃n is the second derivative matrix of Q̃n(θ) with each row evaluated at some point

on the line segment joining θ0 and θ̃. Denote by Ξn the matrix obtained by replacing
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the IY (λj) by the IX(λj) in Ξ̃n. In view of Proposition 1 and its proof, Ξ̃n−Ξn = op(1),
where, by Proposition 1 and Lemma A.7 of VR, Ξn converges in probability to a

positive definite matrix. The result follows from Theorem 2 of VR if ξ̃n − ξn →p 0,

where ξn is defined like ξ̃n with I replacing Ĩ. Since (∂/∂θ)k(λ; θ0)
−1 = O(λ2δ0−η) for

arbitrary η ∈ (0, bd), applying (C.4) again,

E
°°°ξ̃n − ξn

°°° ≤ Cn−bdP
j(p)

λ2δ0−ηj

h
E |u(λj)|2 +

©
E |u(λj)|2EI(λj)

ªbdi
. (C.7)

From Theorem A.3 of VR, λ2δ0j EI(λj) ≤ C. Thus, applying the Theorem, (C.7) is
bounded by

Cnη−bd

log nX
j(p)

j2d−2−η + (log n)bd
X
j(p)

jd−1−η

 .
Choosing η ∈ (max(0, d), bd), this is O((log n)bdnη−bd) → 0 as n → ∞, to complete
the proof. ¤

APPENDIX D: PROOFS OF PROPOSITIONS 3 AND 4

Proof of Proposition 3: An analogous argument to that in the proof of Proposition

1 indicates that it suffices to show that

Q̄n(θ)− Q̃n(θ)→p 0 (D.1)

uniformly in Θ1, as we can then infer from that proof that infΘ2 Q̄(θ), with probability

approaching 1, exceeds an arbitrarily large quantity. The left side of (D.1) is bounded

in absolute value by

C |ν̃ − ν|
n

(¯̄̄̄
¯Pj(p) wx(λj)wY (−λj)k(λj ; θ)

¯̄̄̄
¯
)
+
C(ν̃ − ν)2

n

(P
j(p)

|wx(λj)|2
k(λj; θ)

)
, (D.2)

where wx(λ) = (
Pn

t=1 h
2
t )
−bdPn

t=1 htxte
itλ. Now if xt and yt were Type I processes we

would deduce E |wx(λj)|2 ≤ Cλ−2γ0j , E |wY (λj)|2 ≤ Cλ−2δ0j . In view of (C.4) and the
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Theorem it is readily seen that these bounds apply to our Type II processes. Thus

the suprema over Θ1 of the expressions in braces in (D.2) have, for small enough ε,

expectations bounded by

C
P
j(p)

λ
2δ−δ0−γ0
j ≤ C

nP
j=1

λ
δ0−γ0−1+2ε
j ≤ Cnγ0−δ0+1−2ε,

C
P
j(p)

λ
2(δ−γ0)
j ≤ C

nP
j=1

λ
2(δ0−γ0)−1+2ε
j ≤ Cn2(γ0−δ0)+1−2ε,

respectively. The proof is completed by applying (4.3). ¤

Proof of Proposition 4: For reasons given in the proof of Proposition 2, we need

discuss only the proof of ξ̃n − ξ̂n →p 0, with ξ̂n defined like ξ̃n with Ĩ replaced by Î.

In view of the proofs of Propositions 2 and 3,

°°°ξ̃n − ξ̂n

°°° ≤ C |ν̃ − ν|
nbd

(P
j(p)

λ2δ0−ηj |wx(λj)wY (−λj)|
)

(D.3)

+
C(ν̃ − ν)2

nbd

(P
j(p)

λ2δ0−ηj |wx(λj)|2
)
, (D.4)

for any η ∈ (0, bd). The expressions in braces have expectations bounded by

C
P
j(p)

λ
δ0−γ0−η
j ≤ Cnγ0−δ0+η

nP
j=1

jδ0−γ0−η, (D.5)

C
P
j(p)

λ
2(δ0−γ0)−η
j ≤ Cn2(γ0−δ0)+η

nP
j=1

j2(δ0−γ0)−η, (D.6)

respectively. In view of (4.2), (D.6) is O
¡
n2(γ0−δ0)+η

¢
so that (D.4) is Op

¡
nη+2ρ−bd

¢
=

op(1). Because (D.5) is O(n) for δ0 − γ0 − η > −1, O(n logn) for δ0 − γ0 − η = −1
and O

¡
nγ0−δ0+η

¢
for δ0 − γ0 − η < −1, it follows that in these three cases the left

side of (D.3) is respectively Op
¡
nbd+δ0−γ0+ρ

¢
, Op(n

η+ρ−bd log n) and Op
¡
nη+ρ−bd

¢
, all

of which are op(1). ¤
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