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Abstract

The aggregation procedure when a sample of length N is divided into
blocks of length m = o(N), m → ∞ and observations in each block are
replaced by their sample mean, is widely used in statistical inference.
Taqqu, Teverovsky and Willinger (1995), Teverovsky and Taqqu (1997)
introduced an aggregate variance estimator of the long memory
parameter of a stationary sequence with long range dependence and
studied its empirial performance. With respect to autovariance structure
and marginal distribution, the aggregated series is closer to Gaussian
fractional noise than the initial series. However, the variance type
estimator based on aggregated data is seriously biased. A refined
estimator, which employs least squares regression across varying levels
of aggregation, has much smaller bias, permitting derivation of limiting
distributional properties of suitably centered estimates, as well as of a
minimum mean squared error choice of bandwidth m. The results vary
considerably with the actual value of the memory parameter.
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1. Introduction

A number of estimates are available of the memory parameter of a long range depen-
dent stationary Gaussian process fXt; t 2 Zg, where Z = ft : t 2 0;�1; : : :g. Let Xt have
lag-j autocovariance

(1:1) r(j) = cov(X0;Xj) � �2j��;

as j ! 1, where 0 < �2 < 1 and 0 < � < 1. Then Xt is said to be long range
dependent. The relation (1.1) holds in case of fractionally di�erenced autoregressive in-
tegrated moving average processes with di�erencing parameter (1 � �)=2, or fractional
noise with self-similarity parameter 1� �=2, which specify r(j) for all j. In case no such
�nite-parameter model is speci�ed, robust 'semiparametric' estimation can be based on
(1.1).

On the basis of observations X1; : : : ;XN , Taqqu, Teverovsky and Willinger (1995),
Teverovsky and Taqqu (1997) have proposed the variance type estimate

(1:2) b�m = � logS2
m
a

logm
;

where

S2
m = [

N
a

m
]�1

[N=m]X
k=1

�
X

(m)
k � [

N
a

m
]�1

[N=m]X
j=1

X
(m)
j

�2
;

where [�] denotes integer part and X
(m)
k is the aggregated series of order m,

(1:3) X
(m)
k =

1
a

m

mX
t=1

Xt+(k�1)m; k = 1; 2; :::�

It is intended that both m and N=m be large. A natural connection between the aggre-
gation and the wavelets method for analysing long-memory signals was discussed in the
recent paper by Abry, Veitch and Flandrin (1998). Teverovsky and Taqqu (1997) applied

�̂m to the analysis of ethernet data, while Taqqu, Teverovsky and Willinger (1995) com-
pared its �nite sample performance to that of other estimates of � by means of Monte
Carlo simulations.

In Section 2 we examine asymptotic properties of �̂m. We �nd that whereas X
(m)
k

is closer to Gaussian fractional noise than Xt, �̂m has a bias of order (logm)�1 as m !
1 and N=m ! 1. Thus the bias is of order no less then (logN)�1, so that only in

very long series can �̂m be a useful estimate. We point out in Section 2 that �̂m can be
viewed as merely a special case of a more general class of estimates, but these have similar
asymptotic properties. Prompted by a related idea of Taqqu, Teverovsky and Willinger
(1995), Teverovsky and Taqqu (1997), who proposed a plotting S2

m againstm on a log� log
scale and �tting a straight line, we also consider in Section 2

(1:4) b�m0;m1 = �
Pm1

j=m0
�j logS

2
j
aPm1

j=m0
�2j

;
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where

�j := log j � 1
a

m1 �m0

m1X
i=m0

log i

for m0 < m1, such that m0 !1 as N !1 but N=m1 !1. We �nd that b�m0;m1 is less

biased than b�m, and moreover establish its limiting distributional behaviour and optimal
(minimum mean squared error) choice of m. We compare the properties of b�m0;m1 , with
those of some rival estimates of �. Proofs depend on a sequence of lemmas contained in
Section 3. Since S2

j is invariant to location shift in Xt, we take EXt = 0 with no loss of
generality.

2. Asymptotic properties of b�m and b�m0;m1 .

To describe the limiting behaviour of b�m and b�m0;m1 , we introduce a number of de�-
nitions. Put

(2:1) e�2m(�) = m�ES2
m:

Write
law
= for equality of distributions, and � = o2(1) whenever E�

2 = o(1). For a > 1, put

da = da(�) =

8<: a�; if 0 < � < 1=2,
(a= log a)1=2; if � = 1=2,
a1=2; if 1=2 < � < 1.

Introduce the fractional Brownian motion J1(t) and the Rosenblatt process J2(t), for t 2 R,
as stochastic Ito-Wiener integrals

J1(t) = k1(�)

Z
R

et(x)jxj(��1)=2W (dx);

J2(t) = k2(�)

Z
R2

et(x1 + x2)jx1j(��1)=2jx2j(��1)=2W (dx1)W (dx2);

respectively, where et(x) = (eitx � 1)=(ix), where W (dx) =
a

W (�dx) is a complex-valued
Gaussian spectral measure ("white noise"), with zero mean and covariance EW (dx)

a

W (dy)
= dx if x = y; = 0 otherwise,

k1(�) = (D(�)w(�))�1=2; k2(�) = D(�)�1(2w(2�))�1=2 ;

w(�) =
2
a

(1� �)(2 � �)
; D(�) = 2�(�) cos(

��
a

2
);

see Dobrushin and Major (1979), Taqqu (1979). The processes J1(t); J2(t) are well-de�ned
(on the same probability space) for 0 < � < 1 and 0 < � < 1=2, respectively (see e.g.
Taqqu (1979) for more on these processes). Let Ji � Ji(1); i = 1; 2 and

Z(�)
law
=

(
�2�(�)(f2w(2�)aw(�)2 g1=2J2 � J2

1 +EJ2
1 ); if 0 < � < 1=2,

N (0; s2(�)); if 1=2 � � < 1,
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s2(�) =

�
4�4; if � = 1=2,
2�4�(�)

P
t2Z �

2
t ; if 1=2 < � < 1,

where �2�(�) = �2w(�), and where �t = �t(�) is the autocovariance of fractional Gaussian
noise,

�t = Cov(J1(t)� J1(t � 1); J1(0) � J1(�1)) = 1
a

2
(jt + 1j2�� � 2jtj2�� + jt� 1j2��):

Theorem 2.1. Let (1.1) hold and �2�(�) 6= 0. Then, as N !1; m!1; N=m!1

b�m = � � (logm)�1
n
log�2�(�) + o(1) +

Z(�) + o2(1)
a

�2�(�)dN=m

o
Proof. The proof follows from Lemmas 3.1 and 3.3.

We deduce from Therorem 2.1 that

Eb�m = � � log �2�(�)
a

logm
(1 + o(1))

and moreover that

E(b�m � �)2 =
� log�2�(�)
a

logm

�
(1 + o(1));

so that, in particular
(logm)(b�m � �))P � log �2� 6= 0:

Thus not only are the bias and variance of b�m large (and dependent on �2 as well as �)
but Theorem 2.1 does not provide useful inference rules because e�2�(�) is unknown.

Teverovsky and Taqqu (1997) motivated �̂m by noting that

(2:2) e�2m(�) � �2�(�); as m;N=m!1
due to

(2:3) E(X
(n)
k )2 � �2�(�)n

�� as N !1 for all k:

Our alternative interpretation suggests a broader class of estimates. Suppose Xt has a
spectral density, f(�), satisfying

r(j) =

Z �

��

cos(j�)f(�)d�; j = 0;�1; : : : �

Were Xt weakly dependent, in the sense that 0 < f(0) < 1, then S2
m would be an

(unmodi�ed) Bartlett (1950) nonparametric spectral estimate of 2�f(0), with truncation
point m. Under (1.1) f(0) is typically in�nite but S2

m estimates

m�1X
j=1�m

(1 � jjj
a

m
)r(j) � �2�(�)m

�� ; as m!1:
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S2
m=2� could be replaced in (1.2) by any one of a wide range of alternative smoothed

nonparametric spectral estimates, at zero frequency (see Brillinger, 1975), for example if

S2
m(K) =

m�1X
1�m

K(
jjj
a

m
)r̂(j);

where r̂(j) = N�1
PN�j

t=1 (Xt � �X)(Xt+j � �X), r̂(�j) = r̂(j), j � 0, then

ES2
m(K) � �2

Z 1

�1

K(x)jxj��dx �m��

for a kernel function K. However though �nite sample properties can be inuenced by
choice of K, rates of convergence will typically remain unchanged under standard condi-
tions on K (including K(0) = 1).

Note that while �̂m is invariant to location shift, it has the disadvantage of not being
invariant to a change in the scale of Xt, the scale factor being absorbed in the O((log n)

�1)
bias, which also depends on �. Scale-invariance, but not necessarily a reduction in bias,
could be achieved by considering the estimate - log(S2

m=S
2
1)= logm, where S2

m=S
2
1 is one of

the forms of variance-ratio statistic used in econometrics. Due to the weights �j summing

to zero, the estimate �̂m0;m1 , given in (1.4), is both scale-invariant and has bias of smaller
order.

The leading term of the bias of �̂m0;m1 is studied by re�ning (1.1) in two di�erent
ways. Writing

r(j) = �2jjj�� + r1(j); j 6= 0;

we assume either

Assumption (A): X
t2Z

jr1(t)j <1;

or

Assumption (B):

r1(t) = c1t
����(1 + o(1)) (t!1)

with � 2 (0; 1 � �) and jc1j <1.
Assumption A holds in case of fractional autoregressive integrated moving average

and fractional noise models. Assumption B entails
P

t2Z jr1(t)j =1 and is similar to the
requirement

f(�) � ���1(1 +O(��)); as �! 0

employed in study of alternative estimates of � by Robinson (1994a, 1995).
De�ne

�r1 =
X
t2Z

r1(t);
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and

I(�) = lim
m!1

�Z m

0

x��dx�
mX
x=1

x��
�
;

(see Bender and Orszag (1978), p.305 for an expression of I(�) in terms of Bernoulli
polynomials). Now de�ne

qA(�; r; �
2) =

(1� �)
a

�2�2�(�)
(�r1 � 2�2I(�));

qB(�; �; c) =
2�c1
a

�2�(�)(1 � �)2(1� � � �)(2 � � � �)
:

To characterize limit distributional properties de�ne

eZ(�) law=
8<: �(�)((2w(2�)aw(�)2 )

1=2J2 � J2
1 +EJ2

1 ); if 0 < � < 1=2,

N (0; 0:09); if � = 1=2,
N (0; ~s2(�)); if 1=2 < � < 1,

where

�(�) =
�
a

(1 + �)2

and

~s2(�) =

Z 1

0

Z 1

0

(1 + log u)(1 + log v)(uv)1=2D(u; v)dudv;

where

D(u; v) =
�2
a

w2(�) cos2(��a2 )j cos(��)j�2(�)�(6� 2�)

(2:4)
�jpau=v +pav=uj5�2� + jpau=v �pav=uj5�2� � 2(

pa
u=v)5�2� � 2(

pa
v=u)5�2�

�
:

Theorem 2.2. Let (1.1) hold, �2�(�) 6= 0 and m0;m1 ! 1;m0 = o(m1= log
3m1); m1 =

o(N) as N !1. Then as N !1, under Assumption A

b�m0;m1 = � +
�
�(�)(

m1
a

N
)� + qA(�; �r1; �

2)m��1
1

�
(1 + o(1)) �

eZ(�) + o2(1)
a

dN=m1
(�)

;

and under Assumption B

b�m0;m1 = � +
�
�(�)(

m1
a

N
)� + qB(�; �; c1)m

��
1

�
(1 + o(1)) �

eZ(�) + o2(1)
a

dN=m1
(�)

:

Proof. The proof follows from Lemmas 3.5, 3.7 and 3.9.
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The implications of Theorem 2.2 vary depending on � andm1. We deduce the following
corollary, omitting arguments from �; ~Z; qA and qB and subscripts from b�m0;m1 .

(i) 0 < � < 1=2.
Under Assumption A:

(
N
a

m1
)�(�̂ � �)) � � eZ; if

N�
a

m1
! 0;(2:5)

m1��
1 (�̂ � �)) a� + qA � a eZ; if m1 � aN�;(2:6)

m1��
1 (�̂ � �))P qA; if

m1
a

N�
! 0;(2:7)

Under Assumption B:

(
N
a

m1
)�(�̂ � �)) � � eZ; if

N�
a

m�+�
1

! 0;(2:8)

m�
1 (�̂ � �)) a�+�� + qB � a�+� eZ; if m1 � aN

�
a

�+� ;(2:9)

m�
1 (�̂ � �))P qB ; if

m�+�
1
a

N�
! 0;(2:10)

(ii) � = 1=2.
Under Assumption A:

(
N
a

m1
= log

N
a

m1
)1=2(�̂ � �)) �eZ; if

N
a

m3�2�
1

= log
N
a

m1
! 0;(2:11)

m1��
1 (�̂ � �)) qA � a� eZ; if m1��

1 � a�
� N
a

m1
= log

N
a

m1

�1=2
;(2:12)

m1��
1 (�̂ � �))P qA; if (log

N
a

m1
)
m3�2�

1
a

N
! 0;(2:13)

Under Assumption B:

(
N
a

m1
= log

N
a

m1
)1=2(�̂ � �)) �eZ; if

N
a

m1+2�
1

= log
N
a

m1
! 0;(2:14)

m�
1 (�̂ � �)) qB � a� eZ; if m�

1 � a�
� N
a

m1
= log

N
a

m1

�1=2
;(2:15)

m�
1 (�̂ � �))P qB ; if (log

N
a

m1
)
m1+2�

1
a

N
! 0;(2:16)

(iii) 1=2 < � < 1:
Under Assumption A:

(
N
a

m1
)1=2(�̂ � �)) � eZ; if

N
a

m3�2�
1

! 0;(2:17)

m1��
1 (�̂ � �)) qA � a3=2�� eZ; if m1 � aN

1
a

3�2� ;(2:18)

m1��
1 (�̂ � �))P qA; if

m3�2�
1
a

N
! 0;(2:19)
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Under Assumption B:

(
N
a

m1
)1=2(�̂ � �)) � eZ; if

N
a

m1+2�
1

! 0;(2:20)

m�
1 (�̂ � �)) qB � a�+1=2 eZ; if m1 � aN

1
a

1+2� ;(2:21)

m�
1 (�̂ � �))P qB ; if

m1+2�
1
a

N
! 0:(2:22)

The choice of m1, in cases (2.6), (2.9), (2.12), (2.15), (2.18) and (2.21) minimizes the

order of the mean squared error (MSE) E(b�m0;m1��)2. The leading term in this minimized
MSE can be further minimized with respect to a and a�. For 0 < � < 1

a

2 and 1
a

2 < � < 1
the optimal a are given as follows.

a) For 0 < � < 1
a

2 , under Assumption A

a =
(1� 2�)qA� + f(1� 2�)2q2A�

2 + 4�(1 � �)q2A(�
2 +E eZ(�)2)g1=2
a

2�(�2 +E eZ(�)2) :

b) For 0 < � < 1
a

2 , under Assumption B

a =
h (� � �)qB� + f(� � �)2q2B�

2 + 4��q2B(�
2 +E eZ(�)2)g1=2
a

2�(u2 +E eZ(�)2)
i 1
a

�+�

:

c) For 1
a

2
< � < 1, under Assumption A

a =
n E eZ(�)2
a

2(1 � �)q2A

o 1
a

2��3

:

d) For 1
a

2 < � < 1, under Assumption B

a =
nE eZ(�)2
a

2�q2B

o 1
a

2�+1

:

Note that E eZ(�) = 0. Thus, in various of the cases, the limiting distribution of the

normalized �̂ � � is centered at a non-zero mean. The modi�ed estimate

�̂� = �̂ � (
m1
a

N
)�̂�(�̂)

satis�es

(
N
a

m1
)�(�̂� � �))� eZ

to correspond to (2.5) and (2.8), while replacing �̂ by �̂� in (2.14), (2.17) and (2.20) makes
no di�erence to the limit distribution.
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For 1
a

2 < � < 1, �̂ has a constant rate of convergence and a limiting normal distribution,
although with variance of complicated form that would have to be estimated by numerical
approximation. For 0 < � < 1

a

2
(see (2.5), (2.6), (2.7), (2.8)) the rate of convergence varies

with � and the limit distribution, depending on the Rosenblatt process, is relatively in-
tractable. Moreover, the outcome is also determined by conditions onm1 that vary with �.
Such properties are shared by the average periodogram (AP) estimate of Robinson (1994a),
further analyzed by Lobato and Robinson (1996), and the log-autocovariance (LA) esti-
mate proposed by Robinson (1994b) and modi�ed and analyzed by Hall, Koul and Turlach
(1997) (HKT). By contrast, the log- periodogram (LP) estimate of Geweke and Porter-
Hudak (1983) and the semiparametric Gaussian (SG) estimate of K�unsch (1987) have been
subsequently found to be asymptotically normal for all � 2 (0; 1), with constant rate of
convergence, and simple asymptotic variance that is independent of �, under conditions
on the bandwidth that do not depend on �, The dichotomy in distributional behaviour of
�̂m0;m1 and the AP and LA estimates is due to r(j) being square- summable for � > 1=2

only, while the relative complexity of the asymptotic variance formula, so far as �̂m0;m1

and the LA estimate are concerned, corresponds to failure to attain even approximately
the property of uncorrelated regression errors, so that regression is not a very natural
technique here. The LP and SG estimates, on the other hand, result from an approximate
"whitening" of the Xt and thus mimic the classical properties of regression and maximum
likelihood estimates. It may also be noted that the asymptotic properties of the AP and
SG estimates were established without our assumption of Gaussianity. The convergence
rates of the AP and SG estimates depend on the smoothness of the spectral density at
zero frequency. Instead, we impose assumptions on the asymptotic behaviour of autoco-
variances, which do not have a precise frequency-domain correspondence. Our assumption
(A) is substantially weaker than that of HKT; under their assumption, which is similar
to our assumption (B), our estimator achieves at least as fast a rate of convergence as
the LA one they study. Our results could likely be extended to cover linear processes or
non-Gaussian processes of the type discussed by HKT.

3. Technical Lemmas

Lemma 5.1. Under the conditions of Theorem 1.1,

(3:1) Zm(�) = dN=mm
�(S2

m �ES2
m)

satis�es, as N !1,

(3:2) Zm(�) =) Z(�);

and moreover

(3:3) EZ2
m(�)! EZ2(�):

Proof. Write Zm(�) in terms of the aggregated Gaussian sequence (X
(m)
k ) (1.3):

(3:4) Zm(�) = U2(m)� dN=m(m=N)�
�
U2
1 (m)�EU2

1 (m)
�
;

8



where

U1(m) = N�=2[
N
a

m
]�1

[N=m]X
k=1

X
(m)
k = N�=2X

(m[N=m])
1 ;(3:5)

U2(m) = dN=mm
�[
N
a

m
]�1

[N=m]X
k=1

�
(X(m)

k )2 �E(X(m)
k )2

�
:(3:6)

Let 1=2 � � < 1. Note that dN=m(m=N)� ! 0; indeed, dN=m(m=N)� = (m=N)��1=2

if 1=2 < � < 1; = log�1=2(N=m) if � = 1=2. Since U1(m) is Gaussian, and (2.3) implies
that

(3:7) lim
N!1

EU2
1 (m) = �2�(�);

it follows that

E
�
dN=m(m=N)�(U2

1 (m)�EU2
1 (m))

�2
= O(d2N=m(m=N)2�) = o(1):

Let � > 1=2. Rewrite U2(m) as

(3:8) U2(m) = cN

[N=m]X
k=1

�
(Y

(m)
k )2 �E(Y

(m)
k )2

�
;

where

cN = (
N
a

m
)1=2(1 +O(

m
a

N
)1=2))

and

(3:9) Y
(m)
k =m�=2X

(m)
k

is the normalized aggregated series converging asm!1 to fractional Gaussian noise (see
Lemma 2.1 Dobrushin and Major (1979)). By easy computation, for any k 2 Z,

(3:10) lim
m!1

�
(m)
k � lim

m!1
Cov(Y

(m)
0 ; Y

(m)
k ) = �2�(�)�k ;

and

(3:11) j�(m)
k j � Cjkj�� (jkj � 1);

uniformly in m � 1, where C is a generic constant. Consequently, for 1=2 < � < 1,

(3:12) lim
m!1

X
k2Z

(�(m)
k )2 = �4�(�)

X
k2Z

�2k � s2(�)=2 <1:

9



By evaluating cumulants of the sum on the right hand of (3.9), similarly to Giraitis and
Surgailis (1985, Theorem 5), or Breuer and Major (1983), from (3.9)-(3.13) one infers
U2(m) =) N (0; s2(�)); and EU2

2 (m) ! s2(�), thus proving the theorem in the case
1=2 < � < 1.

Let � = 1=2. Here, the series in (3.12) logarithmically diverges:

(3:13)
X

jkj�N=m

�
�
(m)
k

�2
= 4�4 log(N=m)(1 + o(1)):

By (3.10), (3.13), using the argument in Giraitis and Surgailis (1985, Th. 6), we obtain
U2(m) =)N (0; 4�4) and EU2

2 (m)! 4�4, proving the case � = 1=2.

Finally, let 0 < � < 1=2. Using the argument of Dobrushin and Major (1979, Th. 10),
from (3.10) and (3.11) one has the convergence

(U1(m); U2(m)) =) (��(�)J1;
pa

2���(2�)J2);

together with the convergence of variancesEU2
i (m); i = 1; 2 to the corresponding variances

of the limiting random variables. This yields

Zm(�) =)
pa

2���(2�)J2 � �2�(�)(J
2
1 �EJ2

1 ) =
pa

2�2�(�)((
2w(2�)
a

w2(�)
)1=2J2 � J2

1 + 1);

and (3.3), to complete the proof.

Lemma 3.2 Under the conditions of Theorem 2.1, uniformly in m0 � m � m1,

E
�
m�(S2

m �ES2
m)
�4 � C(m=N)4min(�;1=2)�� (8� > 0):

Proof. Since (3.7) holds uniformly in m0 � m � m1, and U1(m) is Gaussian, it follows

that as N ! 1 E
�
U2
1 (m) � EU2

1 (m)
�4

is bounded uniformly in m0 � m � m1. In
view of (3.1) and (3.4) it remains to check that EU4

2 (m) is similarly bounded. Using the

(diagram) formula for moments of U2(m) in terms of covariances �
(m)
t�s; t; s = 1; : : : ; [N=m]

(see Giraitis and Surgailis (1985), or the proof of Lemma 3.3 below), one obtains

EU4
2 (m) �

�
(
m
a

N
)

[N=m]X
t;s=1

(�
(m)
t�s)

2
�2
� C;

where the last inequality follows from (3.11). The proof is completed.

Lemma 3.2. Under the conditions of Theorem 2.1, uniformly in m0 �m � m1,

(3:14) (b�m � �) logm = � log ~�2m(�) � (~�2m(�))
�1m�

�
S2
m �ES2

m

�
+Rm;

where
ER2

m = o
�
(m=N)min(2�;1)+�

�
(9� > 0):
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Proof. We have

(b�m � �) logm = � log
�
m�S2

m

�
= � log

�
~�2m(�) +m�

�
S2
m �ES2

m

��
:

Set
W1 = f(m=N)3 < m�S2

m � (m=N)�=4g;
W2 = f0 � m�S2

m � (m=N)3g;
W3 = fm�S2

m > (m=N)�=4g:
Then

(b�m � �) logm =
3X

i=1

(�1) log�m�S2
m

�
1(Wi) �

3X
i=1

�m;i;

where 1(:) denotes the indicator function. We show that uniformly in m0 � m � m1,

(3:15) E�2m;i = O
�
(m=N)min(2�;1)+�

�
; i = 1; 2;

while

(3:16) �m;3 = � log ~�2m(�) � (~�2m(�))
�1(S2

m �ES2
m) +R0m;

where
E(R0m)

2 = O
�
(m=N)min(2�;1)+�

�
:

Clearly, (3.15) and (3.16) imply (3.14).
Consider E�2m;1: By the de�nition of W1,

E�2m;1 = E log2
�
m�S2

m

�
1(W1) � 9 log2(m=N)PfW1g:

Here, PfW1g � PfW c
3g; W c

3 being the complement of W3, and

PfW c
3g = Pfm�S2

m � (m=N)�=4g = Pfm�(S2
m �ES2

m) � (m=N)�=4 � ~�2m(�)g
� Pfm�(S2

m �ES2
m) � ��2�(�)=2g

since (3.7) holds uniformly in m0 � m �m1. Thus, for any � > 0,

(3:17) PfW1g � PfW c
3g � Cm4�E(S2

m �ES2
m)

4 � C(m=N)4min(�;1=2)��;

from Lemma 3.2. Hence by taking � > 0 small enough, (3.15) follows for i = 1.

Next, consider �m;2. By the inequality
Pn

1 �jaj �
Qn

1 a
�j
j , which is true for any aj > 0; �j >

0; j = 1; : : : ; n;
Pn

1 �j = 1, we obtain with Yk := m�=2(X
(m)
k � [N=m]�1

P[N=m]
j=1 X

(m)
j )

m�S2
m =

1
a

[N=m]

[N=m]X
k=1

Y 2
k �

[N=m]Y
k=1

Y
2=[N=m]
k :

11



On the other hand, 0 � m�S2
m = 1
a

[N=m]

P[N=m]
k=1 Y 2

k � (m=N)3 < 1 on W2. Thus, Y 2
k �

(m=N)2 on W2. Consequently,

E�2m;2 = E1(W2) log
2(m�S2

m) � E1(W2)
�
log

[N=m]Y
k=1

Y
2=[N=m]
k

�

� [N=m]�2
[N=m]X
k;k0=1

E1(W2)j log Y 2
k j j log Y 2

k0 j

� [N=m]�22�1
[N=m]X
k;k0=1

�
E1(W2) log

2 Y 2
k +E1(W2) log

2 Y 2
k0
�

� max
1�k�[N=m]

E1(W2) log
2 Y 2

k

� P 3=4fW2g max
1�k�[N=m]

(E log8 Y 2
k )

1=4

� C(m=N)3min(�;1=2)�3�=4 max
1�k�[N=m]

E1=4(jYkj� + jYkj��)

� C(m=N)min(2�;1)+�;

because PfW2g � PfW c
3g is estimated by (3.17) and because Yk � N (0; d) where d !

�2�(�) from (2.1) and (2.2).
To show (3.16) we use log(x + y) � log x = y=x + O(y2 max((x�2; (x + y)�2)); for

x > 0; x+ y > 0; with x = ~�2m(�); y = m�(S2
m�ES2

m); x+ y = m�S2
m � (m=N)�=4 on W3,

to obtain

�m;3 = �1(W3)
�
log ~�2m(�) � (~�2m(�))

�1m�(S2
m �ES2

m)
�
+ q1

= � log ~�2m(�) � (~�2m(�))
�1m�(S2

m �ES2
m) + q1 + q2 + q3;

where
Eq21 � C(m=N)��E

�
m�(S2

m �ES2
m)
�4

� O((m=N)�� (m=N)4 min(�;1=2)��) = o((m=N)min(2�;1)+�)

by Lemma 3.2, for any � > 0 small enough,

Eq22 = log2 e�2m(�)P (W c
3 ) = O((m=N)min(2�;1)+�);

using (2.3) and (3.17), and, �nally,

Eq23 = (e�2m(�))�2Ejm�(S2
m �ES2

m)j21(W c
3 ) � CE1=2

�
m�(S2

m �ES2
m)
�4
P 1=2(W c

3 )

� C
�
m=N

�2min(�;1=2)���
m=N

�2min(�;1=2)�� � C
�
m=N

�min(2�;1)+�

for any su�ciently small � > 0. Lemma 3.3 is proved.
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Lemma 3.4. De�ning

�j =
�j
aPm1

j=m0
�2j
:

we have

m1X
j=m0

�j = 0;(3:18)

m1X
j=m0

�2j = m�1
1 (1 + o(1));(3:19)

and , for any  > �1, and uniformly in m0 � t � m1,

m1X
j=m0

�jj
 =


a

(1 + )2
m

1 + o(m
1 );(3:20)

tX
j=m0

j�j jj � Ct
1
a

2+m
�1=2
1(3:21)

Proof. (3.18) is obvious; (3.19) is proved in Robinson (1995). (3.20) follows easily from
(3.19) and the fact that

m1X
j=m0

log j = m1(logm1 + 1)(1 + o(1));

(3:22)

m1X
j=m0

j =
m+1

1
a

 + 1
(1 + o(1));

m1X
j=m0

j log j =
m+1

1 logm1
a

 + 1
(1 + o(1)) +

m+1
1
a

( + 1)2
(1 + o(1)):

Finally (3.21) follows from (3.9), using relations above and the Cauchy inequality.

Lemma 3.5.

b�m0;m1 = � � bm0;m1(�) � (e�2m(�))�1�m0;m1(�) +Rm0;m1 ;

where

�m0;m1(�) =

m1X
j=m0

�jj
�(S2

j �ES2
j )

and
ER2

m0;m1
= O((m1=N)min(2�;1)+�) (9� > 0):

13



Proof. As Rm0;m1 =
Pm1

j=m0
�jRj (see (3.14)), so by Lemma 3.3 and Lemma 3.4 (3.21),

ER2
m0;m1

� C
� m1X
j=m0

j�j jE1=2R2
j

�2
� C

� m1X
m=m0

j�j j(j=N)min(�;1=2)+�=2
�2
� C(m1=N)min(2�;1)+�;

proving the lemma.

Lemma 3.6 As m!1,

(3:22) ~�2m(�) = �2�(�) +
�
Q(m) � (

m
a

N
)��2�(�)

�
(1 + o(1))

and

(3:23) log(~�2m(�)) = log�2�(�) +
�Q(m)
a

�2�(�)
� (

m
a

N
)�
�
(1 + o(1));

where

Q(m) =

�
(�r1 � 2�2I(�))m��1; under Assumption (A),

2c1
a

(1����)(2����)m
��; under Assumption (B).

Proof. From (2.3)

e�2m(�) = m�E
�
(X

(m)
1 )2 � (X

([N=m]m)
1

�2g
= m�E(X

(m)
1 )2 � (

m
a

N
)��2�(�)(1 + o(1)):

We have

E(X
(m)
1 )2 =

1
a

m2

mX
t;s=1

r(t � s) =
r(0)
a

m
+

2
a

m2

m�1X
j=1

(m� j)r(j):

Using the relations

m�1X
t=1

t�� = (1� �)�1m1�� � I(�) + o(1);

m�1X
t=1

t1�� = (2� �)�1m2�� +O(m1��);

for 0 < � < 1, the proof of (3.22) is completed under Assumption B, whereas under
Assumption A it remains only to deduce from the Toeplitz lemma that

Pm
1 (1�j=m)r1(j) =

�r1 + o(1): Then (3.23) follows because logfe�2m(�)=�2� (�)g = (e�2m(�) � �2�(�))(1 + o(1)):
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Lemma 3.7.Under the conditions of Theorem 2.1

bm0;m1(�) = �
�
�(�)(

m1
a

N
)� +Q(m1)

h(�; �)
a

�2�(�)

�
(1 + o(1));

where

h(�; �) =

�
(1 � �)=�2 ; if Assumption (A) holds,
�=(1� �)2; if Assumption (B) holds.

Proof. By Lemma 3.6 and (3.18),

bm0 ;m1(�) =

m1X
j=m0

�j log e�2j (�)
=
n
��2� (�)

m1X
j=m0

�jQ(j)�
m1X

j=m0

�j(j=N)�
o�

1 + o(1)
�
:(3:24)

By Lemma 3.5 (3.20),

(3:25)

m1X
j=m0

�j(j=N)� = �(�)(m1=N)�
�
1 + o(1)

�
;

and, similarly, with Lemma 3.6 in mind,

(3:26)

m1X
j=m0

�jQ(j) = �h(�; �)Q(m1)
�
1 + o(1)

�
:

(3.24)-(3.26) imply the lemma.

Lemma 3.8. Let 1=2 < � < 1. For almost every (u; v) 2 [0; 1]2, as N;m!1; m = o(N),

(3:27); Dm(u; v) � ��4� (�)EU2([um])U2([vm])! D(u; v);

and moreover, for any � > 0 there is a constant C = C� <1 such that

(3:28)
��EU2([um])U2([vm])

�� � C; (u; v) 2 (�; 1]2:

Proof. Write Nu;m = [N=[um]]. Then

U2([um]) = N�1=2
u;m

Nu;mX
t=1

�
(Y

([um])
t )2 �E(Y

([um])
t )2

�
;
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where Y
(m)
t is given by (3.9). We have

�4�(�)Dm(u; v) =
�
Nu;mNv;m

��1=2 Nu;mX
t=1

Nv;mX
s=1

�
�[mu];[mv](t; s)

�2
;

where

�4�(�)�[mu];[mv] (t; s) := EY
[mu]
t Y [mv]

s

= ([mu][mv])�=2�1
[mu]X
i=1

[mv]X
l=1

r(i � l + (t � 1)[mu]� (s � 1)[mv]):

Observe that, as m; jtu� svj ! 1 and uniformly in (u; v) 2 (�; 1]2,

(3:29) �[mu];[mv](t; s) � �2(uv)�=2
a

jtu� svj� :

Indeed,

��2jtu� svj��[mu];[mv](t; s) =
� [mu]
a

m

[mv]
a

m

��=2�1 [mu]X
i=1

[mv]X
l=1

m�2B(i=m; l=m)
�
1 + o(1)

�
;

where

B(x; y) � B(x; y; t; s; u; v;m) :=
jtu� svj�
a

jx� y + (tu� sv) + u� vj� ! 1

as jtu�svj ! 1, and uniformly in x; y; u; v 2 [0; 1]. Hence, (3.29) clearly follows. Similarly,
for any t; s 2 Z �xed,

(3:30) �[mu];[mv](t; s) � u;v(t; s); as m!1;

uniformly in (u; v) 2 (�; 1]2, where

u;v(t; s) = �2(uv)�=2�1
Z u

0

Z v

0

jx� y + (t � 1)u� (s � 1)vj��dxdy

= �2�(�)(uv)
�=2�1Cov

�
J1(tu)� J1((t� 1)u); J1(sv) � J1((s � 1)v

�
:(3:31)

From (3.30)-(3.31) and the uniform boundedness of e�[mu];[mv](t; s) it follows, uniformly in
(u; v) 2 (�; 1]2, that

Dm(u; v) = �m(u; v)
�
1 + o(1)

�
;

where

(3:32) �m(u; v) =
�
Nu;mNv;m

��1=2 Nu;mX
t=1

Nv;mX
s=1

2u;v(t; s):

16



By (3.31),

u;v(t; s) =

Z
R

ei(tu�sv)xhu;v(x)dx;

where

hu;v(x) = k21(�)(uv)
�=2�1(1� e�iux)(1 � eivx)jxj��3; x 2 R:

Below, we prove the convergence (3.29), or

�m(u; v)! �(u; v)

for 0 < u; v � 1 such that the ratio u=v is irrational number. As the Lebesgue measure

of such pairs (u; v) 2 [0; 1]2 equals 1, this proves (3.27). Put ehu;v(x) = (1 � e�iux)(1 �
eivx)jxj��3; eu;v(t; s) = RR ei(tu�sv)xehu;v(x)dx. Then

eu;v(t; s) = egu;v(tu� sv);

where egu;v(z) = Z
R

eizxehu;v(x)dx; z 2 R

is the Fourier transform. Write e�m(u; v) for the right hand side of (3.32) with u;v(t; s)
replaced by eu;v(t; s). Then

e�m(u; v) = e�m;K (u; v) + �m;K ;

where

e�m;K (u; v) =
�
Nu;mNv;m

��1=2 Nu;mX
t=1

Nv;mX
s=1

e2u;v(t; s)1(jtu� svj � K):

According to (3.29) and (3.30),

j�m;K j � C
�
Nu;mNv;m

��1=2 Nu;mX
t=1

Nv;mX
s=1

jtu� svj�2�1(jtu� svj > K)

� C(m=N)

Z N=m

0

Z N=m

0

jt� sj�2�1(jt� sj > K)dsdt � CK1�2� = o(1)

uniformly in N;m;N=m!1.

Consider e�m;K (u; v). Note that jtu� svj � K (t; s 2 Z) is equivalent to t = [sv=u] +
l; jlj � [K=u]; l 2 Z. Hence

e�m;K(u; v) =
X

l:jlj�[K=u]

dm(l);

17



where

dm(l) � dm(l;u; v)

=
�
Nu;mNv;m

��1=2 Nv;mX
s=1

eg2u;v([sv=u]u+ lu� sv)1(1 � l � [sv=u] � Nu;m � l):

Write dm(l) = edm(l) + �m(l), where

edm(l) = �
Nu;mNv;m

��1=2 Nv=mX
s=1

eg2u;v(([sv=u]� sv=u+ l)u):

As jlj is bounded (jlj � [K=u]) and jegu;v(z)j � RR jehu;v(x)jdx � C(u; v) <1, so j�m(l)j =
O(C2(u; v)(m=N)) = o(1). To show the limit of edm(l), we use the fact that the fractional
part fsv=ug := sv=u � [sv=u]; s 2 Z of the irrational number sv=u is asymptotically
uniformly distributed in the interval [0; 1] (see e.g. Drobot (1964, Theorem on Uniform
Distribution)). Namely, for any interval I � [0; 1],

(3:33) �N (I) := (1=N)
NX
s=1

1(fsv=ug 2 I)! �(I); (N !1);

where �(I) is the Lebesgue measure. From (3.33) and the continuity of egu;v(z) it follows
that for any l 2 Z and any pair 0 < u; v � 1 such that v=u is irrational,

edm(l) = �
Nv;m=Nu;m

�1=2 Z 1

0

eg2u;v((l � �)u)�Nv;m(d�)

! (u=v)1=2
Z 1

0

eg2u;v((l � �)u)d�:

By the argument above,

(3:34) e�m;K (u; v)! (u=v)1=2
X

jlj�[K=u]

Z 1

0

eg2u;v((l � �)u)d�:

It remains to show that the right hand side of (3.34) (times (uv)��2�4�k
4
1(�)) approaches

D(u; v) as K !1.
Write egu;v((l � �)u) = u�1

Z
�

eilyH(y; �)dy;

where � = (��; �] and where

(3:35) H(y; �) � H(y; �;u; v) =
X
k2Z

ehu;v((y + 2k�)=u)e�i(y+2k�)�

18



is a continuous function on �nf0g satisfying jH(y; �)j � Cjyj��1; y 2 �, where the constant
C = C(u; v) <1 does not depend on �. The last bound impliesH(�; �) 2 L2(�) uniformly

in �; it follows from (3.35) and the bound jehu;v(y)j � Cjyj��1 if jyj � 1;� Cjyj��3 if jyj > 1.
Consequently, by Parseval's theorem,

lim
K!1

X
jlj�[K=u]

eg2u;v((l � �)u) = 2�u�2
Z
�

jH(y; �)j2dy;

uniformly in � 2 [0; 1], and therefore

lim
K!1

(u=v)1=2
X

jlj�[K=u]

Z 1

0

eg2u;v((l � �)u)d� = 2�u�3=2v�1=2
Z
�

Z 1

0

jH(y; �)j2dyd�:

The last integral is

X
k;j2Z

Z
�

nZ 1

0

ei2(j�k)��d�
oehu;v((y + 2k�)=u)
aehu;v((y + 2j�)=u)dy

=
X
k2Z

Z
�

jehu;v((y + 2k�)=u)j2dy = u

Z
R

jehu;v(y)j2dy
to prove the convergence (3.27) for

D(u; v) = 2�k41(�)(uv)
��5=2

Z
R

j(1� e�iux)(1 � eivx)j2jxj2��6dx

where the formula (2.4) is deduced by repeated integration by parts.
It remains to show the bound (3.28) which follows from the Cauchy-Schwartz inequal-

ity and

(3:36) EU2
2 ([um]) � C

uniformly in u 2 (�; 1]. Here, (3.36) follows from

(3:37) Dm(u; u) � N�1
u;m

Nu;mX
t;s=1

�
�[um];[um](t; s)

�2 � C; u 2 (�; 1];

where �[um];[um](t; s) = �
([um])
t�s satis�es j�[um];[um](t; s)j � Cjt�sj��+ uniformly in u 2 (�; 1];

see (3.11). Hence, (3.37) easily follows (recall � > 1=2). Lemma 3.8 is proved.

Lemma 3.9. Under the conditions of Theorem 2.2 (without assuming (A) or (B)),

dN=m1
�m0;m1(�) = �2�(�) eZ(�) + o2(1);
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where

�m0;m1(�) =

m1X
j=m0

�jd
�1
N=m1

Zj(�):

Proof. Let 0 < � � 1=2. Write

�m0;m1(�) =

m1X
i=m0

�id
�1
N=iZi(�) =

� m1X
i=m0

�id
�1
N=i

�
Zm1(�) + eRm0;m1 ;

where eRm0;m1 =

m1X
i=m0

�id
�1
N=i(Zi(�) � Zm1(�)):

We show that

(3:38) E eR2
m0;m1

= o
�
d�2N=m1

�
:

Then the statement of Lemma 3.9 follows from Lemma 3.1 and

m1X
i=m0

�id
�1
N=i = �(�)d�1N=m1

�
1 + o(1)

�
;(3:39)

m1X
i=m0

j�ijd�1N=i � Cd�1N=m1
:(3:40)

Let us �rst check (3.39)-(3.40). For � < 1=2, they follow from Lemma 3.4, (3.20) and
(3.21). If � = 1=2,

m1X
i=m0

�id
�1
N=i = (

log(N=m1)
a

N
)1=2

m1X
i=m0

�ii
1=2 +O((

logm1
a

N
)1=2

m1X
i=m0

j�iji1=2)

=
2
a

9
d�1N=m1

(1 + o(1))

and (3.40) follow in the same way.
Consider (3.38). We have:

E eR2
m0;m1

�
m1X

j;j0=m0

j�j jd�1N=jj�j0 jd�1N=j0E
1=2jZm1(�) � Zj(�)j2 E1=2jZm1(�) � Zj0(�)j2

� 2 max
m0�j�[�m1 ]

EjZm1(�) � Zj(�)j2
� [�m1]X
j=m0

j�j jd�1N=j

�2
+ 2 max

[�m1]�j�m1

EjZm1(�) � Zj(�)j2
� m1X
j=[�m1]

j�j jd�1N=j

�2
=: p0m0;m1

+ p00m0;m1
:
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We show below that, in the case 0 < � � 1=2, for each � > 0,

(3:41) max
[�m1]�j�m1

E(Zm1 (�) � Zj(�))
2 ! 0:

Together with (3.40), this implies

(3:42) p00m0;m1
= o

� m1X
j=[�m1]

j�j jd�1N=j

�2
= o(d�2N=m1

):

Consequently, (3.38) follows from (3.42) and the inequality

(3:43) p0m0;m1
� �(�)d�2N=m1

where �(�)! 0 as �! 0. In turn, (3.43) follows from maxj�1EZ2
j (�) <1 (see (3.3)) and

[�m1]X
j=m0

j�j jd�1N=j � C�d�1N=m1

which follows from (3.21).
Let us turn to the proof of (3.41). To that end, according to (3.4)-(3.6), it su�ces to

show that, for any � > 0,

max
[�m1]�j�m1

E
�
U2(m1)� U2(j)

�2 ! 0; if 0 < � � 1=2;(3:44)

max
[�m1]�j�m1

E
�
U2
1 (m1) �U2

1 (j)
�2 ! 0; if 0 < � < 1=2:(3:45)

As E
�
U2(m1)� U2(j)

�2
= EU2

2 (m1) � 2EU2(m1)U2(j) +EU2
2 (j), so (3.44) follows from

(3:46) qm;j := EU2(m)U2(j)! q

uniformly in [�m1] � j;m �m1, where the limit q does not depend on m; j. We have

qm;j =
dN=m
a

[N=m]

dN=j
a

[N=j]

[N=m]X
t=1

[N=j]X
s=1

EH2(Y
(m)
t )H2(Y

(j)
s )

= 2
dN=m
a

[N=m]

dN=j
a

[N=j]

[N=m]X
t=1

[N=j]X
s=1

�2m;j(t; s);

where H2(Y
(j)
t ) = (Y

(j)
t )2 �E(Y

(j)
t )2, and where

(3:47) �m;j(t; s) = EY
(m)
t Y (j)

s = m1��=2j1��=2
mX
i=1

jX
l=1

r(i � l + (t � 1)m� (s� 1)j):
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Let us split the right hand side of (3.47) into two parts q0m;j and q
00
m;j according to whether

j(t � 1)m� (s � 1)jj > Km1 or j(t� 1)m � (s � 1)jj � Km1 holds, where K > 2 a given
number. By assumption (1.1), if j(t�1)m� (s�1)jj > Km1, then r(i� l+(t�1)m� (s�
1)j) = �2ji� l+ (t� 1)m� (s � 1)jj��(1 + oK(1)) = �2j(t� 1)m� (s � 1)jj�(1 + oK(1)),
where oK(1) ! 0 (K !1) uniformly in t; s;m; j and uniformly in 1 � i; l � m1. Hence,
if 0 < � < 1=2, for each K <1 one obtains

q0m;j = 2�4
dN=m
a

[N=m]

dN=j
a

[N=j]
m�j�

[N=m]X
t=1

[N=j]X
s=1

j(t � 1)m� (s � 1)jj�2�

1(j(t � 1)m � (s � 1)jj � Km1)
�
1 + oK(1)

�
= 2�4

Z 1

0

Z 1

0

jt� sj�2�dtds+ oK (1);

uniformly in �m1 � m; j � m1. Similarly, if � = 1=2, then

q0m;j = 2�4
1
a

(log(N=m) log(N=j))1=2N

Z N

0

Z N

0

jt� sj�11(jt� sj � Km1)dtds
�
1 + oK(1)

�
= 4�4

log(N)
a

(log(N=m) log(N=j))1=2
�
1 + oK(1)

�
= 4�4 + oK (1);

uniformly in �m1 � m; j � m1. To end the proof of (4.46), it remains to estimate

(3:48) q00m;j = 2
dN=m
a

[N=m]

dN=j
a

[N=j]

[N=m]X
t=1

[N=j]X
s=1

�2m;j(t; s)1(j(t � 1)m� (s� 1)jj < Km1):

From j(t�1)m� (s�1)jj < Km1 and �m1 � m; j � m1 one has j(t�1)� (s�1)j=mj � K
and therefore, for �xed s, the sum over t in (3.48) has a bounded number of terms. Using

the boundedness of j�m;j(t; s)j = jEY (m)
t Y

(j)
s j � (E(Y

(m)
t )2E(Y

(j)
s )2)1=2 = e�m(�)e�j (�),

(see Lemma 3.6), one obtains, in the case 0 < � < 1=2,

q00m;j � C(m=N)1��(j=N)1��
N=jX
s=1

1 � Cm1��j��N2��1 � C(m1=N)1�2� = o(1);

the case � = 1=2 follows analogously. This proves (3.46) and hence (3.44). Similarly, (3.45)
follows from

(3:49) EU2
1 (m)U2

1 (j)! p

uniformly in �m1 � j;m � m1, where limit p does not depend on m; j. Relation (3.49)
with p = 3�4�(�) follows easily from Gaussianity of U1(m); U1(j) and (3.5). This proves
the lemma for 0 < � � 1=2.
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Let now 1=2 < � < 1. Write

�m0;m1(�) =

m1X
i=m0

�id
�1
N=iZi(�) =

[�m1]�1X
i=m0

: : :+

m1X
i=[�m1]

: : : � �0 +�00:

Here, similarly as in the proof of (3.43), one can show that

E(�0)2 � �(�)d�2N=m1
;

where �(�)! 0 (�! 0. It remains to show that, for each � > 0,

(3:50) dN=m1
�00 =)N (0; �4�(�)~s

2
� (�));

and that there exists the limit

(3:51) lim
�!0

~s2� (�) = ~s2(�):

According to (3.4),

�00 =

m1X
j=[�m1]

�jd
�1
N=jU2(j)�

m1X
j=[�m1]

�
�jd

�1
N=j

�
dN=j(j=N)�(U2

1 (j)�EU2
1 (j)) � e�00 �X ;

where E
�
dN=j(j=N)�(U2

1 (j) � EU2
1 (j))

�2
= O((m1=N)2��1) = o(1) uniformly in [�m1] �

i � m1; see (5:110): Hence EX 2 = o
�Pm1

j=[�m1]
j�jjd�1N=j

�2
= o(d�2N=m1

); see (3.21), and it

remains to show that (3.50)-(3.51) hold with �00 replaced by e�00.
To prove the asymptotic normality (3.50), it is enough to show that the corresponding

cumulants of order k � 3 vanish, i.e. that

(3:52) Cumk(e�00) = o(d�kN=m1
); k � 3;

and, moreover, the convergence of variances:

(3:53) (N=m1)Var(e�00)! �4�(�)~s
2
� (�):

We prove now (3.51) using the argument in Giraitis and Surgailis (1985), Theorem 5. By
the multilinearity property of the cumulants (see Brillinger (1975), Theorem 2.3.1),

(3:54) Cumk(e�00) = m1X
j1:::;jk=[�m1]

Cum(U2(j1); : : : ; U2(jk))
kY

p=1

�jpd
�1
N=jp

where on the right hand side is the joint cumulant of random variables U2(j1); : : : ; U2(jk).
We claim that

(3:55) �k � Cum(U2(j1); : : : ; U2(jk)) = o(1)
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uniformly in [�m1] � j1; : : : ; jk � m1. Hence (3.52) follows by (3.54) and (3.21). To prove
(3.55), write

U2(j) = [N=j]�1=2
[N=j]X
t=1

H2(Y
(j)
t ):

By the well-known (diagram) formula,

�k =
X
Pk�1

2k
kY

r=1

[N=jr]
�1=2

[N=jp(1)]X
t1=1

: : :

[N=jp(k) ]X
tk=1

�jp(1) ;jp(2) (t1; t2)

� � � �jp(k�1) ;jp(k) (tk�1; tk)�jp(k) ;jp(1) (tk; t1) �
X
Pk�1

�
(p)k
k ;

where the sum
P
Pk�1

is taken over all permutations (p)k � (p(1); : : : ; p(k)) of (1; 2; : : : ; k)

such that p(1) = 1. Consider an arbitrary term �
(p)k
k , e.g. (p)k = (1; 2; : : : ; k) for simplicity.

Given K > 0, write

Tk �
[N=j1]X
t1=1

: : :

[N=jk]X
tk=1

�j1;j2 (t1; t2) � � � �jk;j1(tk; t1) = T 0k;K + T 00k;K ;

where the sum T 0k;K is taken over t1; : : : ; tk which satisfy jjptp � jp+1tp+1j < Km1 for all
p = 1; : : : ; k, with the convention jk+1 = j1; tk+1 = t1. As [�m1] � jp � m1; p = 1; : : : ; k,
so jT 0k;K j � C(K)(N=m1). To estimate T 00k;K we need the inequalities: for any p = 1; : : : ; k,

(3:56) �p �
[N=jp]X
t=1

[N=jp+1]X
s=1

�2jp;jp+1
(t; s) � CN=m1

because the �m;j(t; s) are uniformly bounded, and

(5:57) �p;K �
[N=jp]X
t=1

[N=jp+1]X
s=1

�2jp;jp+1
(t; s)1(jjpt� jp+1sj > Km1) � �(K)N=m1;

where �(K)! 0 (K !1). Relations (3.56)-(3.57) follow easily from the bound:
j�m;j(t; s)j � C(mj)�jtm� sjj��; jtm� sjj > K; see (3.39).

Using Cauchy - Schwartz inequality (see eq. (2.14) of Giraitis and Surgailis (1985)),
by (3.56)-(3.57) one obtains

jT 00k;K j �
kX

p=1

�
1=2
p;K

Y
q=1;:::;k:q 6=p

�1=2p � C�1=2(K)(N=m1)
k=2:

Consequently, for (p)k = (1; 2; : : : ; k),

j�(p)kk j � C
n kY
p=1

(jp=N)1=2
o�
C(K)(N=m1) + �1=2(K)(N=m1)

k=2
�

� C(K)(m1=N)(k�2)=2 + C�1=2(K) = o(1);
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provided k � 3. The above estimate clearly applies to abitrary permutations (p)k 2 Pk�1,
thus proving (3.55).

Finally, let us prove (3.53). We have

~s2�;N(�) :=
1
a

�4�(�)
Var(dN=m1

e�00) = d2N=m1
a

�4�(�)

m1X
i;j=[�m1]

�i�j(ij=N
2)1=2EU2(i)U2(j)

=

Z 1

�

Z 1

�

m1�[um1]m1�[vm1]([um1][vm1]=m
2
1)

1=2Dm1 (u; v)dudv;

where Dm1 (u; v) = ��4� (�)EU2([um1])U2([vm1]). Observe (see the proof of Lemma 3.4)
that, uniformly in u 2 (�; 1],

m1�[um1] ! 1 + log u (m1 !1):

According to Lemma 3.8, for almost every (u; v) 2 (0; 1]2,

Dm1 (u; v)! D(u; v);

and, furthermore, jDm1 (u; v)j is uniformly bounded on (u; v) 2 (�; 1]2. Therefore, one can
pass to the limit under the signs of integral in (3.59), yielding

~s2�;N (�)! ~s2�(�) =

Z 1

�

Z 1

�

(1 + logu)(1 + log v)(uv)1=2D(u; v)dudv:

The limit (3.51) is obtained by putting � = 0 in the integral above, as the limiting integral
on (0; 1]2 is well-de�ned and �nite.
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