4,411 research outputs found

    Assessing the potential for U.S. utility green bonds

    Full text link
    EXECUTIVE SUMMARY: Bonds are the largest single class of financial instrument across the world’s financial markets. Recently, a subclass of these bonds, called green bonds, has emerged in the market place. Green bonds are a type of bond whose proceeds may be used only for certain approved “green” investments. In exchange for agreeing to invest only in such projects, the bond issuer obtains some value greater than they would obtain from traditional financing, and are therefore encouraged to finance and undertake a greater number of green projects. This unique value may not be recognized in traditional financial accounting. Of course, like any other capital-raising investment, green bonds enable their issuer to finance a new project that should increase (or at least maintain) its revenues, profits, and cash flow. The utility sector was the second largest issuer of green bonds in 2017, accounting for $26.2 billion dollars’ worth of green bond issuance globally. These were primarily issued to finance renewable energy projects, a class of projects that makes the utility sector one of the most logical for deployment of green bonds. While choosing to issue green bonds does not seem to have any price advantage over regular bonds in the market, green bonds can provide other benefits. These benefits may include reputation effects, better treatment in secondary markets, and other intangibles (See Table ES1)

    Speciation without chromatography: Part I. Determination of tributyltin in aqueous samples by chloride generation, headspace solid-phase microextraction and inductively coupled plasma time of flight mass spectrometry

    Get PDF
    An analytical procedure was developed for the determination of tributyltin in aqueous samples. The relatively high volatility of the organometal halide species confers suitability for their headspace sampling from the vapour phase above natural waters or leached solid samples. Tributyltin was collected from the sample headspace above various chloride-containing matrices, including HCl, sodium chloride solution and sea-water, by passive sampling using a polydimethylsiloxane/divinylbenzene (PDMS/DVB)-coated solid-phase microextraction (SPME) fiber. Inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) was used for detection following thermal desorption of analytes from the fiber. A detection limit of 5.8 pg ml–1(as tin) was realized in aqueous samples. Method validation was achieved using NRCC PACS-2 (Sediment) certified reference material, for which reasonable agreement between certified and measured values for tributyltin content was obtained

    Revisiting the Intricacies and Theories of the Island Rule: Understanding the Trends of Insular Body Size Evolution

    Get PDF
    The Island Rule is the observed tendency for island isolated animals to either grow or shrink in size compared to their mainland counterparts. Though the phenomenon was initially observed to only occur in a handful of taxa (carnivores, artiodactyls, rodents, and lagomorphs), it was expanded to include 2 major trends: 1) Large animals from the mainland tend to shrink on islands, and 2) Small animals from the mainland tend to grow. The mechanisms attributed to those two trends generally involved factors that include resource availability, ecological release, niche expansion, predation, competition, and life history traits. Other theories were also proposed, but each had their own caveats that did not apply as a general rule. The study of the island rule, and island biogeography in general, allows a simplified view of dynamics that may possibly be reflected on mainlands. An example of this includes ecological release and niche expansion in the case of mammals following the Cretaceous/Tertiary extinction event. Following the collapse of dinosaurian prevalence, the relatively small mammals were given the opportunity to grow and speciate accordingly. However, upon further observation, the island rule in its generality did not encompass all fauna, and exceptions were found for the insular trend. Bergmann’s rule of latitudinal differentiation for body sizes, as well as general climate change, have been found to potentially influence body size shifts as well. As a result, some have chosen to strip the Island Rule of its status as a virtual law, and instead explain the trend as being a phenomenon greatly affected by both biotic and abiotic components to determine insular body size. Regardless of the specific definition, it is maintained that a strong understanding of island processes may lend a better understanding of mainland developmental ecology and evolution

    Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis

    Get PDF
    This work was financially supported by the U. S. Office of Naval Research grant N00014‐12‐1‐0204, under the project “Multi‐study Ocean acoustics Human effects Analysis” (MOCHA). . L. Tyack received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The case study data were provided by the 3S project, which was funded by the U.S. Office of Naval Research, the Norwegian Ministry of Defense, the Netherlands Ministry of Defense, and WWF Norway.Behavioral response studies (BRSs) aim to enhance our understanding of the behavior changes made by animals in response to specific exposure levels of different stimuli, often presented in an increasing dosage. Here, we focus on BRSs that aim to understand behavioral responses of free-ranging whales and dolphins to manmade acoustic signals (although the methods are applicable more generally). One desired outcome of these studies is dose-response functions relevant to different species, signals and contexts. We adapted and applied recurrent event survival analysis (Cox proportional hazard models) to data from the 3S BRS project, where multiple behavioral responses of different severities had been observed per experimental exposure and per individual based upon expert scoring. We included species, signal type, exposure number and behavioral state prior to exposure as potential covariates. The best model included all main effect terms, with the exception of exposure number, as well as two interaction terms. The interactions between signal and behavioral state, and between species and behavioral state highlighted that the sensitivity of animals to different signal types (a 6–7 kHz upsweep sonar signal [MFAS] or a 1–2 kHz upsweep sonar signal [LFAS]) depended on their behavioral state (feeding or nonfeeding), and this differed across species. Of the three species included in this analysis (sperm whale [Physeter macrocephalus], killer whale [Orcinus orca] and long-finned pilot whale [Globicephala melas]), killer whales were consistently the most likely to exhibit behavioral responses to naval sonar exposure. We conclude that recurrent event survival analysis provides an effective framework for fitting dose-response severity functions to data from behavioral response studies. It can provide outputs that can help government and industry to evaluate the potential impacts of anthropogenic sound production in the ocean.Publisher PDFPeer reviewe

    Quiver grassmannians, quiver varieties and the preprojective algebra

    Full text link
    Quivers play an important role in the representation theory of algebras, with a key ingredient being the path algebra and the preprojective algebra. Quiver grassmannians are varieties of submodules of a fixed module of the path or preprojective algebra. In the current paper, we study these objects in detail. We show that the quiver grassmannians corresponding to submodules of certain injective modules are homeomorphic to the lagrangian quiver varieties of Nakajima which have been well studied in the context of geometric representation theory. We then refine this result by finding quiver grassmannians which are homeomorphic to the Demazure quiver varieties introduced by the first author, and others which are homeomorphic to the graded/cyclic quiver varieties defined by Nakajima. The Demazure quiver grassmannians allow us to describe injective objects in the category of locally nilpotent modules of the preprojective algebra. We conclude by relating our construction to a similar one of Lusztig using projectives in place of injectives.Comment: 30 pages. v2: minor corrections and notation changes, some proofs simplified. v3: Some statements and their proofs corrected. This version incorporates an erratum to the published version. See Appendix B for detail

    A novel Rac1/PAK1/BCL-6/STAT5 pathway modulates the expression of cell-cycle-associated genes

    Get PDF
    Gene expression depends on binding of transcriptional regulators to gene promoters, a process controlled by signalling pathways. The transcriptional repressor BCL-6 downregulates genes involved in cell cycle progression and becomes inactivated following phosphorylation by the Rac1 GTPase activated protein kinase PAK1. Interestingly, the DNA motifs recognized by BCL-6 and STAT5 are similar. Because STAT5 stimulation in epithelial cells can also be triggered by Rac1 signalling, we asked whether both factors have opposing roles in transcriptional regulation and whether Rac1 signalling may coordinate a transcription factor switch. We used chromatin immunoprecipitation to show that active Rac1 promotes release of the repressor BCL-6 while increasing binding of STAT5A to a BCL-6-regulated reporter gene. We further show in colorectal cell lines that the endogenous activation status of the Rac1/PAK1 pathway correlated with the phosphorylation status of BCL-6 and STAT5A. Three cellular genes (cyclin D2, p15INK4B, SUMO1) were identified to be inversely regulated by BCL-6 and STAT5A and responded to Rac1 signalling with increased expression and corresponding changes in promoter occupancy. Together, our data show that Rac1 signalling controls a group of target genes that are repressed by BCL-6 and activated by STAT5A, providing novel insights into the modulation of gene transcription by GTPase signalling
    • 

    corecore