5,986 research outputs found

    Representations of Time Coordinates in FITS

    Full text link
    In a series of three previous papers, formulation and specifics of the representation of World Coordinate Transformations in FITS data have been presented. This fourth paper deals with encoding time. Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Employing the well--established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.Comment: FITS WCS Paper IV: Time. 27 pages, 11 table

    Nonthermal gamma-ray and X-ray flashes from shock breakout in gamma-ray bursts/supernovae

    Full text link
    Thermal X-ray emission which is simultaneous with the prompt gamma-rays has been detected for the first time from a supernova connected with a gamma-ray burst (GRB), namely GRB060218/SN2006aj. It has been interpreted as arising from the breakout of a mildly relativistic, radiation-dominated shock from a dense stellar wind surrounding the progenitor star. There is also evidence for the presence of a mildly relativistic ejecta in GRB980425/SN1998bw, based on its X-ray and radio afterglow. Here we study the process of repeated bulk Compton scatterings of shock breakout thermal photons by the mildly relativistic ejecta. During the shock breakout process, a fraction of the thermal photons would be repeatedly scattered between the pre-shock material and the shocked material as well as the mildly relativistic ejecta and, as a result, the thermal photons get boosted to increasingly higher energies. This bulk motion Comptonization mechanism will produce nonthermal gamma-ray and X-ray flashes, which could account for the prompt gamma-ray burst emission in low-luminosity supernova-connected GRBs, such as GRB060218. A Monte Carlo code has been developed to simulate this repeated scattering process, which confirms that a significant fraction of the thermal photons get "accelerated" to form a nonthermal component, with a dominant luminosity. This interpretation for the prompt nonthermal emission of GRB060218 may imply that either the usual internal shock emission from highly relativistic jets in these low-luminosity GRBs is weak, or alternatively, that there are no highly relativistic jets in this peculiar class of bursts.Comment: Accepted for publication in ApJ; Introduction expanded, references added, conclusions unchanged; total 7 pages including 2 color figures and 1 tabl

    The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum

    Full text link
    A thermal radiative component is likely to accompany the first stages of the prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We analyze the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. We consider both the internal shock model and a 'slow heating' model as possible dissipation mechanisms. For comparable energy densities in the thermal and the leptonic component, the dominant emission mechanism is Compton scattering. This leads to a nearly flat energy spectrum (\nu F_\nu \propto \nu^0) above the thermal peak at ~10-100 keV and below 10-100 MeV, for a wide range of optical depths 0.03 <~ \tau_{\gamma e} <~ 100, regardless of the details of the dissipation mechanism or the strength of the magnetic field. At lower energies steep slopes are expected, while above 100 MeV the spectrum depends on the details of the dissipation process. For higher values of the optical depth, a Wien peak is formed at 100 keV - 1 MeV, and no higher energy component exists. For any value of \tau_{\gamma e}, the number of pairs produced does not exceed the baryon related electrons by a factor larger than a few. We conclude that dissipation near the thermal photosphere can naturally explain both the steep slopes observed at low energies and a flat spectrum above 10 keV, thus providing an alternative scenario to the optically thin synchrotron - SSC model.Comment: Discussion added on the results of Baring & Braby (2004); Accepted for publication in Ap.

    Differential Uptake of Gold Nanoparticles by 2 Species of Tadpole, the Wood Frog (Lithobates Sylvaticus) and the Bullfrog (Lithobates Catesbeianus)

    Full text link
    Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination \u3e wood frogs alone \u3e bullfrogs in combination \u3e bullfrogs alone \u3e controls. In all gold-exposed groups of tadpoles, gold was concentrated in the anterior region compared with the posterior region of the body. The concentration of gold nanoparticles in the anterior region of wood frogs both alone and in combination with bullfrogs was significantly higher than the corresponding posterior regions. We also measured depuration time of gold in wood frogs. After 21 d in a solution of gold nanoparticles, tadpoles lost \u3e83% of internalized gold when placed in gold-free water for 5 d. After 10 d in gold-free water, tadpoles lost 94% of their gold. After 15 d, gold concentrations were below the level of detection. Our finding of differential uptake between closely related species living in similar habitats with overlapping geographical distributions argues against generalizing toxicological effects of nanoparticles for a large group of organisms based on measurements in only one species

    The impact of plasticizer and degree of hydrolysis on free volume of poly (vinyl alcohol) films

    Get PDF
    The effect of plasticizer species and the degree of hydrolysis (DH) on the free volume properties of poly(vinyl alcohol) (PVA) were studied using positron annihilation lifetime spectroscopy. Both glycerol and propylene glycol caused an increase in the free volume cavity radius, although exhibited distinct plasticization behavior, with glycerol capable of occupying existing free volume cavities in the PVA to some extent. The influence of water, normally present in PVA film under atmospheric conditions, was also isolated. Water added significantly to the measured free volume cavity radius in both plasticized and pure PVA matrices. Differences in plasticization behavior can be attributed to the functionality of each plasticizing additive and its hydrogen bonding capability. The increase in cavity radii upon plasticizer loading shows a qualitative link between the free volume of voids and the corresponding reduction in Tg and crystallinity. Cavity radius decreases with increasing DH, due to PVA network tightening in the absence of acetate groups. This corresponds well with the higher Tg observed in the resin with the higher DH. DH was also shown to impact the plasticization of PVA with glycerol, indicating that the larger cavities—created by the weaker hydrogen bonding acetate groups—are capable of accommodating glycerol molecules with negligible effect on the cavity dimensions

    Cooling Rates for Relativistic Electrons Undergoing Compton Scattering in Strong Magnetic Fields

    Full text link
    For inner magnetospheric models of hard X-ray and gamma-ray emission in high-field pulsars and magnetars, resonant Compton upscattering is anticipated to be the most efficient process for generating continuum radiation. This is due in part to the proximity of a hot soft photon bath from the stellar surface to putative radiation dissipation regions in the inner magnetosphere. Moreover, because the scattering process becomes resonant at the cyclotron frequency, the effective cross section exceeds the classical Thomson value by over two orders of magnitude, thereby enhancing the efficiency of continuum production and the cooling of relativistic electrons. This paper presents computations of the electron cooling rates for this process, which are needed for resonant Compton models of non-thermal radiation from such highly-magnetized pulsars. The computed rates extend previous calculations of magnetic Thomson cooling to the domain of relativistic quantum effects, sampled near and above the quantum critical magnetic field of 44.13 TeraGauss. This is the first exposition of fully relativistic, quantum magnetic Compton cooling rates for electrons, and it employs both the traditional Johnson and Lippman cross section, and a newer Sokolov and Ternov (ST) formulation of Compton scattering in strong magnetic fields. Such ST formalism is formally correct for treating spin-dependent effects that are important in the cyclotron resonance, and has not been addressed before in the context of cooling by Compton scattering. The QED effects are observed to profoundly lower the rates below extrapolations of the familiar magnetic Thomson results, as expected, when recoil and Klein-Nishina reductions become important.Comment: 33 pages, 11 figures, accepted for publication in The Astrophysical Journa

    Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease

    Get PDF
    ObjectivesThe objective of this study was to determine whether colchicine 0.5 mg/day can reduce the risk of cardiovascular events in patients with clinically stable coronary disease.BackgroundThe presence of activated neutrophils in culprit atherosclerotic plaques of patients with unstable coronary disease raises the possibility that inhibition of neutrophil function with colchicine may reduce the risk of plaque instability and thereby improve clinical outcomes in patients with stable coronary disease.MethodsIn a clinical trial with a prospective, randomized, observer-blinded endpoint design, 532 patients with stable coronary disease receiving aspirin and/or clopidogrel (93%) and statins (95%) were randomly assigned colchicine 0.5 mg/day or no colchicine and followed for a median of 3 years. The primary outcome was the composite incidence of acute coronary syndrome, out-of-hospital cardiac arrest, or noncardioembolic ischemic stroke. The primary analysis was by intention-to-treat.ResultsThe primary outcome occurred in 15 of 282 patients (5.3%) who received colchicine and 40 of 250 patients (16.0%) assigned no colchicine (hazard ratio: 0.33; 95% confidence interval [CI] 0.18 to 0.59; p < 0.001; number needed to treat: 11). In a pre-specified secondary on-treatment analysis that excluded 32 patients (11%) assigned to colchicine who withdrew within 30 days due to intestinal intolerance and a further 7 patients (2%) who did not start treatment, the primary outcome occurred in 4.5% versus 16.0% (hazard ratio: 0.29; 95% CI: 0.15 to 0.56; p < 0.001).ConclusionsColchicine 0.5 mg/day administered in addition to statins and other standard secondary prevention therapies appeared effective for the prevention of cardiovascular events in patients with stable coronary disease

    MicroRNA Expression Patterns in Human Anterior Cingulate and Motor Cortex: A Study of Dementia with Lewy Bodies Cases and Controls

    Get PDF
    Overview MicroRNAs (miRNAs) have been implicated in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease (AD). Here, we evaluated the expression of miRNAs in anterior cingulate (AC; Brodmann area [BA] 24) and primary motor (MO; BA 4) cortical tissue from aged human brains in the University of Kentucky AD Center autopsy cohort, with a focus on dementia with Lewy bodies (DLB). Methods RNA was isolated from gray matter of brain samples with pathology-defined DLB, AD, AD+DLB, and low-pathology controls, with n=52 cases initially included (n=23 with DLB), all with low (\u3c4hrs) postmortem intervals. RNA was profiled using Exiqon miRNA microarrays. Quantitative PCR for post-hoc replication was performed on separate cases (n=6 controls) and included RNA isolated from gray matter of MO, AC, primary somatosensory (BA 3), and dorsolateral prefrontal (BA 9) cortical regions. Results The miRNA expression patterns differed substantially according to anatomic location: of the relatively highly-expressed miRNAs, 150/481 (31%) showed expression that was different between AC versus MO (at p\u3c0.05 following correction for multiple comparisons), most (79%) with higher expression in MO. A subset of these results were confirmed in qPCR validation focusing on miR-7, miR-153, miR-133b, miR-137, and miR-34a. No significant variation in miRNA expression was detected in association with either neuropathology or sex after correction for multiple comparisons. Conclusion A subset of miRNAs (some previously associated with α-synucleinopathy and/or directly targeting α-synuclein mRNA) were differentially expressed in AC and MO, which may help explain why these brain regions show differences in vulnerability to Lewy body pathology
    • 

    corecore