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Abstract 
Aims 

Folic acid supplementation lowers total plasma homocysteine (tHcy) and improves 

endothelial function in individuals with coronary artery disease (CAD) and in those 

with additional CAD risk factors. We assessed whether endothelial function is 

impaired in healthy subjects with hyperhomocysteinemia but without other CAD risk 

factors and whether folic acid supplementation improves endothelial function in these 

subjects.  

Methods 

Flow-mediated dilatation (FMD) of the brachial artery was performed on 26 healthy 

subjects, age 49 ± 2 yrs (mean + SEM), with high tHcy (15.6 ± 1.5 µmol/l) and 16 

healthy age-matched subjects with low tHcy (7.9 ± 0.6 µmol/l) (p<0.001). High tHcy 

subjects were then randomised to receive 5mg/day of folic acid or placebo for 8 

weeks in a double-blind cross-over trial with 4-week washout.  

Results 

FMD was not associated with tHcy and was not different between high and low tHcy 

groups (7.0 ± 0.6% vs 6.6 ± 1.2%, p=0.76). Treatment with folic acid decreased tHcy 

by 34% in hyperhomocysteinemic subjects (p=0.02 vs placebo) but had no effect on 

FMD (+0.5 ± 0.6% vs –0.7 ± 0.5%, p=0.17 vs placebo).  

Conclusion 

In healthy subjects with hyperhomocysteinemia but without additional cardiovascular 

risk, endothelial function is unimpaired and folic acid supplementation has no 

additional effect. 

Keywords: 

Endothelial function, Folic acid supplementation, Homocysteine, Atherosclerosis, 

Ultrasound  
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INTRODUCTION 

Hyperhomocysteinemia is now considered an independent and graded risk factor for 

atherosclerotic vascular disease (1), and for mortality in patients with coronary artery 

disease (CAD) (2). Mildly elevated levels of homocysteine occur commonly in the 

general population as a result of either genetic influences or sub-optimal nutrition 

(3;4). Since supplementation with folic acid lowers total plasma homocysteine (tHcy) 

in both healthy individuals and those with existing CAD (5), folic acid 

supplementation may be a simple and effective method for both primary and 

secondary prevention of CAD.   

Experimental evidence suggests that hyperhomocysteinemia may cause 

vascular damage and dysfunction (4;6) and indeed, hyperhomocysteinemia has been 

associated with impaired endothelial function in healthy volunteers (7;8). 

Supplementation with folic acid lowers homocysteine and also improves endothelial 

function in subjects with CAD (9-11)  or those with other risk factors for CAD (12). 

However the effects of homocysteine lowering on endothelial function in healthy 

subjects with mild to moderate hyperhomocysteinemia, but without other clearly 

defined risk factors is still uncertain. Whilst some studies have shown an 

improvement (13;14), others have found no change (15). A variable effect of folic 

acid supplementation may be a consequence of folic acid acting independently of 

reductions in homocysteine (16;17). In studies in which improved endothelial 

function has occurred, the changes have usually not been associated with the actual 

decreases in tHcy (9;10;14;16;18;19) In addition, folic acid or its active form, 5-

methyltetrahydrofolate, restores endothelial function in familial 

hypercholesterolaemic subjects without hyperhomocysteinemia (12;18). In-vitro 

studies suggest that these improvements in endothelial function, rather than occurring 

directly via a reduction in homocysteine, may occur as either a direct or indirect 

reduction in oxidative stress (16;18). 

This study assessed whether healthy subjects with basal tHcy levels in the 

upper quartile of a West Australian population but without other CAD risk factors had 

impaired endothelial function. We also determined whether the lowering of 

homocysteine with high dose (5mg/day) folic acid supplementation for  

8 weeks, would improve endothelial function in these subjects.  
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METHODS 

Subjects 

Subjects were original participants in a random electoral survey of 2000 people from 

the metropolitan area of Perth, Western Australia (20). From these invited subjects, a 

total of 1111 (558 men, 553 women), age 52 ± 13 yrs (mean ± SD; range 27 to 77 

yrs), were assessed between June 1995 and December 1996 for tHcy and standard 

cardiovascular risk factors (3), and then divided into sex-specific quartiles according 

to their tHcy. We randomly selected 26 healthy male and female subjects from those 

in the upper tHcy quartile (men> 14.4; women>12.8 µmol/l) who were also aged 

between 35-60 years, who had never smoked, had a total cholesterol < 6.0 mmol/l, 

were non-diabetic, normotensive (systolic blood pressure < 140 mmHg), were not 

receiving medication for cholesterol, blood pressure, or asthma and who did not take 

vitamin supplements. Sixteen healthy age-matched subjects in the bottom tHcy 

quartile (men< 10.5; women<8.4 µmol/l) were recruited as a control population and 

were also used to assess the reproducibility of the brachial artery ultrasound 

technique. However they were not used in the folic acid intervention phase of the 

study. The study was approved by the Institutional Ethics Committee of the 

University of Western Australia and conforms with the principles outlined in the 

Declaration of Helsinki (21). 

 

Study design 

The intervention study was performed in the hyperhomocysteinemic subjects (n=26) 

in a double-blinded cross-over fashion with subjects randomly allocated to either 

placebo or folic acid (5mg/day) for 8 weeks followed by a 4-week washout, then 

crossed over to either folic acid or placebo for the final 8 weeks. Subjects were tested 

at the beginning and end of each 8-week intervention period. On each occasion 

subjects attended after a 12-hour fast for blood tests, and a brachial artery ultrasound 

study to determine endothelium-dependent and endothelium-independent function.  

Subjects were instructed to avoid changing their normal diet for the duration of the 

study and on the morning of their visits to only drink water. The control participants 

with low tHcy (n=16) had the same blood tests, and brachial ultrasound studies were 

performed on 2 visits one week apart without any treatment or change of diet between 

visits in order to assess the reproducibility of the technique. 

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   5

 

Laboratory measurements 

Fasting venous blood samples were obtained at each visit for subjects in both the high 

and low homocysteine groups. Samples were collected into vacutainers containing 

EDTA or heparin for the measurement of red cell folate (RCF), vitamins B6 and B12 

and total plasma homocysteine (tHcy).   The samples were centrifuged shortly after 

venipuncture. For tHcy assays, the plasma was separated, transported on ice, and 

stored at –700 until assay. tHcy was determined by reverse-phase high performance 

liquid chromatography after treatment with tributylphosphine, deproteinization, and 

fluorogenic derivatization by the method of Araki and Sako (22). The inter-assay 

coefficient of variation (CV) is 6% in our laboratory (23). RCF was measured by a 

procedure based upon ion capture technology (AxSYM Folate, Abbott Laboratories, 

Illinois). The inter-assay CV is 4.1 % and the mean (normal range) 331.4 ng/mL 

(180.4-617.5 ng/mL). Vitamin B6 (pyridoxal –5’-phosphate) was measured by 

microbial assay (24). The inter-assay CV is 7.1 % and the normal range for healthy 

middle-aged subjects 21.6-66.0 nmol/L. Vitamin B12 was determined from serum 

obtained at baseline using a micro particle enzyme immunoassay (AxSYM B12, 

Abbott Laboratories, Illinois).  The inter-assay CV is 6.8 % and the mean (normal 

ranges) for healthy subjects 474 pg/mL (100 - 2437 pg/mL). At baseline, total 

cholesterol, HDL cholesterol and triglyceride levels were determined enzymatically 

with a Hitachi 747 autoanalyser. LDL cholesterol was calculated using the method by 

Friedwald et al. (25). 

 

Brachial artery ultrasound 

Flow-mediated dilatation (FMD) and glyceryl trinitrate-mediated dilatation 

(GTNMD) were used to assess endothelium-dependent and endothelium-independent 

function respectively. The technical aspects of the ultrasound procedure used for the 

assessment of FMD and GTNMD have been described previously by Celermajer et al 

(26). Briefly, 2-dimensional B-mode ultrasound images of the lumen/arterial wall 

interface of the left-hand brachial artery were obtained in the distal third of the upper 

arm using a high resolution 12 MHz linear array transducer (Sequoia, Accuson 

instruments, Colorado, USA). Baseline scans assessing vessel diameter were recorded 

over one minute.  Arterial flow velocity was measured using a pulsed Doppler signal 

at 700 to the vessel with the range gate (1.5mm) in the centre of the artery. A rapid 
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inflation/deflation pneumatic cuff, previously placed around the forearm immediately 

distal to the humeral epicondyle, was inflated to 250 mm Hg for 4.5 min to induce 

FMD. Recordings commenced 30 sec prior to cuff deflation and continued for 90 

seconds after cuff deflation.  After 10 mins, a second baseline scan was recorded. This 

was followed by sublingual administration of glyceryl trinitrate (400 µg) and 

recording of images for a further 5 minutes. All images were recorded on super-VHS 

videotape (Sony MQSE 180), for retrospective analysis. Baseline volume flow was 

calculated by multiplying the mean velocity time integral of the Doppler flow signal 

for 2 consecutive pulse waves, by the heart rate and vessel cross-sectional area. Peak 

hyperaemic response was calculated using 2 consecutive pulse waves within the first 

15 seconds following cuff deflation, and dividing by baseline flow. FMD and 

GTNMD measurements were performed using traditional manual analysis techniques 

with ultrasonic callipers (26). The mean of 2 observers measurements were used for 

all scans. Observers were blinded to patient group and treatment order. 

 

Reproducibility of brachial artery ultrasound 

Ultrasound scans were repeated one week later on subjects with low tHcy (n=16) 

under the same conditions as their first scan. Values for each visit were calculated as 

the mean measurement of 2 observers and within-subject variability of FMD and 

GTNMD was calculated as the between-visits CV.  

 

Statistical analysis 

Data were analysed using SPSS (SPSS Inc, Chicago). Differences in baseline 

characteristics between subjects with high and low tHcy, and between the 2 groups of 

subjects with high tHcy were compared with unpaired t-tests. Effects of treatment  

and placebo were assessed using a paired t-test on the changes during each period. 

Treatment period interactions were assessed for RCF, tHcy, FMD and GTNMD by 

comparing changes in the 2 groups during the two treatment periods with an unpaired 

t-test. Linear regression analysis was conducted to examine the relationships between 

RCF, tHcy, and FMD. Differences were considered significant at a p value <0.05. All 

variables were tested for normality using histograms and Kolmogorov-Smirnov 

statistics. Values are reported as mean ± SE except for changes due to treatment, 

which are reported as mean (95% confidence interval). FMD and GTNMD responses 
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were calculated as the percent increases from baseline diameter. CV’s for FMD and 

GTNMD were calculated as the pooled SD for replicates ÷ mean. The statistical 

power for a cross-over study using the ultrasound technique was determined using an 

MS-DOS based statistical power calculation program (POWER) (27). Power was 

calculated for detecting an absolute 2% change in FMD. 

 

RESULTS 

Within-subject reproducibility of brachial artery ultrasound 

In the control population with low tHcy (n=16), the mean (± SD) %FMD for visits 1 

and 2 were 6.6 ± 4.8 % and 6.4 ± 3.0 %, respectively. The combined mean was 6.5 ± 

3.8 % and the mean absolute difference between visits was 1.6 ± 1.9 %. The between 

visit CV for %FMD was 24.6 % and the Pearson correlation coefficient r=0.91. The 

power to detect an absolute 2% change in FMD in the cross-over study was 83% at an 

alpha of 0.05.  

The mean (± SD) %GTN for visits 1 and 2 were 18.4 ± 6.6 % and 19.4 ± 8.5 

%, respectively. The combined mean was 19.6 ± 8.0 % and the mean absolute 

difference between visits was 1.5 ± 1.0 %. The between visit CV for %GTN was 

7.7% and the Pearson correlation coefficient r=0.96. The power to detect an absolute 

2% change in GTN in the cross-over study was 99.4% at an alpha of 0.05. 

 

Subject characteristics 

Table 1 shows the characteristics of all subjects at baseline. Subjects with high tHcy 

had higher levels of tHcy (15.6 ± 1.5 µmol/l vs 7.9 ± 0.6 µmol/l, p<0.001), and 

plasma creatinine (91 ± 3 vs 74 ± 3, p<0.001), but lower levels of RCF (332 ± 21 

ng/ml vs 425 ± 41 ng/ml, p=0.03) than those with low tHcy. However, there were no 

significant differences in other baseline clinical variables. At baseline, tHcy was 

inversely associated with RCF amongst all subjects (r=-0.4, p<0.01) and also amongst 

the subjects with high tHcy alone (r=-0.38, p=0.05). However, there were no 

associations between FMD and tHcy for all subjects (r=0.23, p=0.14) or for those 

with high tHcy alone (r=0.16, p=0.45). FMD, GTNMD, and hyperaemic responses 

were no different between the high and low tHcy subjects (Table 1). 

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   8

Amongst subjects with high tHcy, there were no significant differences 

between the initial folic acid and placebo groups in their baseline characteristics 

including tHcy, RCF, FMD, GTNMD, and reactive hyperaemia (data not shown). .  

 

Effect of treatment 

Table 2 shows the effect of treatment in each group between visits 1 and 2, and 

between visits 3 and 4. When the results of both groups were combined (n=26),  

treatment with folic acid increased RCF by an average of 89% (+300 + 26 ng/mL) 

compared to a decrease of 8% (-33 + 26 ng/mL) during treatment with placebo 

(treatment minus placebo effect = 333 ng/mL (254, 411), p<0.001) . Similarly, tHcy 

decreased by an average of 34% (–5.0 + 1.6 µmol/l) with folic acid compared with a 

mean increase of 2% (+0.2 + 0.6 µmol/l) with placebo (treatment minus placebo 

effect = -5.2 µmol/l (-9.5, -1.0), p=0.02). However, folic acid had no effect on either 

FMD (treatment minus placebo effect = 1.2% (-0.5, 2.8), p=0.17) or GTNMD 

(treatment minus placebo effect = -0.4% (-3.4, 2.6), p=0.77) compared to placebo 

(Figure 1) and changes in tHcy during treatment were not significantly associated 

with changes in FMD (r=0.02, p=0.94). Following the 4-week washout period, RCF 

was significantly higher (499 ± 23 ng/ml vs 352 ± 34 ng/ml, p=0.002), and tHcy 

significantly lower (10.3 ± 0.5 µmol/l vs 13.6 ± 0.8 µmol/l, p=0.001) in the subjects 

who received treatment first compared to those who received placebo first (Table 2). 

However, no significant treatment-period interactions between the 2 groups occurred 

in any of the variables (Table 2). 

 

Discussion 

This study has demonstrated that endothelial function is not significantly impaired in 

healthy subjects with mild to moderate basal hyperhomocysteinemia but without other 

risk factors for CAD. In addition, 8-weeks of high-dose folic acid supplementation did 

not have any additional effect on endothelial function in this population despite 

substantial reductions in tHcy, increases in RCF, and sufficient statistical power to 

detect a small (2%) absolute change in FMD.  

Other studies have not clearly established whether basal elevation of tHcy is 

associated with impaired FMD in otherwise healthy subjects. Pullin et al (15) found 

no difference in FMD in healthy individuals with elevated tHcy who were 
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homozygous (TT) for the C677T mutation in the methylenetetrahydrofolate reductase 

gene compared to wild-type (CC) individuals with normal tHcy (15). By comparison, 

Woo et al (7) and Tawakol et al (8) reported that hyperhomocysteinemia was 

associated with impaired FMD in “healthy” subjects. Differences in clinical risk 

characteristics of the subjects such as smoking history (7), older-age (8) and higher 

tHcy levels (7) may explain the discordance in these data with our own findings and 

those of Pullin et al (15).  

The absence of endothelial dysfunction in our subjects despite 

hyperhomocysteinemia is also plausible in light of numerous reports showing the lack 

of an association between improvements in endothelial function and reductions in 

tHcy subsequent to folic acid supplementation (9;10;14;16;18;19). Similarly, 

improvements in FMD were not associated with reductions in either tHcy or free Hcy 

following either an acute dose (2 hours or 4 hours) or long-term administration (6 

weeks) of 5mg/day of folic acid in CAD patients (9). However, free plasma Hcy has 

been shown to be a significant independent predictor of FMD in another group of  

CAD patients (10),  

Our finding of no effect on FMD with high-dose folic acid supplementation in 

a healthy population is supported by Pullin et al. (15) using lower doses of folic acid 

(400µg/day) in healthy subjects with hyperhomocysteinemia in the presence of 

genetic mutations of methylenetetrahydroflate reductase. Thus, no improvement in 

FMD occurred despite increases in plasma folate and reductions in tHcy. Whilst their 

subjects only received 400µg of folic acid/day compared to our higher dose of 

5mg/day, this should have been sufficient to reduce tHcy levels maximally in most 

subjects (5).  

The disparate findings concerning the effects of folic acid on endothelial 

function in subjects with hyperhomocysteinemia may be a result of the presence or 

absence of CAD or other cardiovascular risk factors. Atherosclerotic vascular disease 

or added risk may be necessary before endothelial function is impaired as a 

consequence of hyperhomocysteinemia (28). For example, the combination of 

smoking and hyperhomocysteinemia appears to greatly increase cardiovascular risk 

(29), possibly via a synergistic effect on antioxidant defences (30). Accordingly, folic 

acid has been demonstrated to cause improvement of endothelial function in 

hyperhomocysteinemic patients with CAD (10;11). 
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Whilst small increases in FMD have been observed in studies of healthy 

subjects with hyperhomocysteinemia following high-dose folic acid supplementation, 

uncertainty exists regarding the subjects’ risk-profile (13,14).  Thus, in the study by 

Bellamy et al (13) using blood donors, the age of the “healthy” volunteers were not 

specified and they also allowed higher inclusion levels of blood pressure and serum 

cholesterol than in our study. In the other study by Woo et al (14) using Chinese 

subjects, their smoking status was not stated and serum cholesterol levels were not 

measured. In addition, neither of these two studies included control subjects without 

hyperhomocysteinemia to determine if endothelial function was impaired at baseline.  

Possibility exists for the acute effects of folic acid, rather than its 

homocysteine-lowering effects to be responsible for improvements in endothelial 

function. FMD was increased only 2 hours after consuming 5mg of folic acid, despite 

no change in tHcy (9). Likewise, folic acid or its active form, 5-

methyltetrahydrofolate, restores endothelial function in familial 

hypercholesterolaemic subjects without hyperhomocysteinemia (12;18). These effects 

may be a consequence of folic acid reducing LDL-induced eNOS increases in the 

generation of superoxide production (18) and/or enhancing NO synthesis by 

increasing the effectiveness of tetrahydrobiopterin (a co-factor for NO synthesis) on 

NO synthase uncoupling (17).  The acute effects of folic acid, may thus explain the 

improvements in endothelial function observed in healthy subjects with 

hyperhomocysteinemia who were instructed to take their folic acid supplement before 

attending for tests of vascular function (14). In our own study, subjects were 

requested to drink water only on the morning of their visits, thereby ensuring that  

chronic rather than  acute effects of folic acid supplementation were assessed. 

 The absence of any effects on endothelial function in this study are unlikely to 

have been due to the slight carry-over effects following folic acid washout since there 

was no significant treatment-period interaction. Although the washout period was not 

sufficient to normalise tHcy, it was sufficient for the studies of vascular function. In 

our study we assessed RCF, an indicator of long-term folate status, as opposed to 

plasma folate, which varies rapidly after folic acid intake. Whilst there was an 

association between RCF and tHcy at baseline, there were no associations between 

either RCF or tHcy and endothelial function. This supports our main findings that 

endothelial function is not necessarily impaired in healthy subjects with basal 
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hyperhomocysteinemia, and that in this case, reducing homocysteine does not have 

any additional effect on endothelial function.  

In conclusion, our results suggest that mild to moderate 

hyperhomocysteinemia alone does not cause endothelial dysfunction in healthy 

subjects in the absence of other cardiovascular risk factors. Folic acid 

supplementation may therefore not be beneficial in reducing cardiovascular risk in 

this section of the general population. 

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   12

Acknowledgements 

This study was financially supported by a grant-in-aid from Healthway, the Health 

Promotion Foundation of Western Australia. We gratefully acknowledge Marcus 

Somerville (BSc) for technical assistance and Jo Crittendon (RN) for nursing 

assistance.  

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   13

References 

 

 1.  Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative 

assessment of plasma homocysteine as a risk factor for vascular disease. 

Probable benefits of increasing folic acid intakes.  JAMA 1995;274:1049-1057. 

 2.  Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. 

Plasma homocysteine levels and mortality in patients with coronary artery 

disease.  N Eng J Med 1997;337:230-236. 

 3.  McQuillan BM, Beilby JP, Nidorf M, Thompson PL, Hung J. 

Hyperhomocysteinemia but not the C677T mutation of 

methylenetetrahydrofolate reductase is an independent risk determinant of 

carotid wall thickening. The Perth Carotid Ultrasound Disease Assessment 

Study (CUDAS).  Circulation 1999;99:2383-2388. 

 4.  Welch GN, Loscalzo J. Homocysteine and atherothrombosis.  N Eng J Med 

1998;338:1042-1050. 

 5.  Homocysteine Lowering Trialists' Collaboration. Lowering blood homocysteine 

with folic acid based supplements: meta-analysis of randomised trials.  BMJ 

1998;316:894-898. 

 6.  Jakubowski H. Protein homocysteinylation: possible mechanism underlying 

pathological consequences of elevated homocysteine levels.  FASEB J 

1999;13:2277-2283. 

 7.  Woo KS, Chook P, Lolin YI, Cheung AS, Chan LT, Sun YY, et al. 

Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in 

humans.  Circulation 1997;96:2542-2544. 

 8.  Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. 

Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent 

vasodilation in humans.  Circulation 1997;95:1119-1121. 

 9.  Doshi SN, McDowell IF, Moat SJ, Payne N, Durrant HJ, Lewis MJ, et al. Folic 

acid improves endothelial function in coronary artery disease via mechanisms 

largely independent of homocysteine lowering.  Circulation 2002;105:22-26. 

 10.  Chambers JC, Ueland PM, Obeid OA, Wrigley J, Refsum H, Kooner JS. 

Improved vascular endothelial function after oral B vitamins: An effect 

mediated through reduced concentrations of free plasma homocysteine.  

Circulation 2000;102:2479-2483. 

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   14

 11.  Title LM, Cummings PM, Giddens K, Genest JJJ, Nassar BA. Effect of folic 

acid and antioxidant vitamins on endothelial dysfunction in patients with 

coronary artery disease.  J Am Coll Cardiol 2000;36:758-765. 

 12.  Verhaar MC, Wever RM, Kastelein JJ, van Loon D, Milstien S, Koomans HA, 

et al. Effects of oral folic acid supplementation on endothelial function in 

familial hypercholesterolemia. A randomized placebo-controlled trial.  

Circulation 1999;100:335-338. 

 13.  Bellamy MF, McDowell IF, Ramsey MW, Brownlee M, Newcombe RG, Lewis 

MJ. Oral folate enhances endothelial function in hyperhomocysteinaemic 

subjects.  Eur J Clin Invest 1999;29:659-662. 

 14.  Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS. Folic 

acid improves arterial endothelial function in adults with hyperhomocystinemia.  

J Am Coll Cardiol 1999;34:2002-2006. 

 15.  Pullin CH, Ashfield-Watt PA, Burr ML, Clark ZE, Lewis MJ, Moat SJ, et al. 

Optimization of dietary folate or low-dose folic acid supplements lower 

homocysteine but do not enhance endothelial function in healthy adults, 

irrespective of the methylenetetrahydrofolate reductase (C677T) genotype.  J 

Am Coll Cardiol 2001;38:1799-1805. 

 16.  Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB, et al. 

Folate improves endothelial function in coronary artery disease: an effect 

mediated by reduction of intracellular superoxide?  Arterioscl Throm Vas 

2001;21:1196-1202. 

 17.  Stroes ES, van Faassen EE, Yo M, Martasek P, Boer P, Govers R, et al. Folic 

acid reverts dysfunction of endothelial nitric oxide synthase.  Circ Res 

2000;86:1129-1134. 

 18.  Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ. 

5-methyltetrahydrofolate, the active form of folic acid, restores endothelial 

function in familial hypercholesterolemia.  Circulation 1998;97:237-241. 

 19.  Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Endothelial 

dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid.  Clin 

Sci 1999;96:235-239. 

 20.  Risk Factor Prevalence Study Management Committee. Risk factor prevalence 

study:survey No.3, 1989.  141. 1990. Canberra, National Heart Foundation of 

Australia and Australian Institute of Health.  

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   15

 21.  World Medical Association, Inc. World Medical Association Declaration of 

Helsinki. Cardiovascular Research 35(1), 2-3. 1997.  

 22.  Araki A, Sako Y. Determination of free and total homocysteine in human 

plasma by high-performance liquid chromatography with fluorescence 

detection.  J Chromaogr 1987;A.. 422:43-52. 

 23.  Rossi E, Beilby JP, McQuillan BM, Hung J. Biological variability and reference 

intervals for total plasma homocysteine.  Ann Clin Biochem 1999;36:56-61. 

 24.  Davis RE, Smith BK, Curnow DH. An automated method for the 

microbiological assay of serum pyridoxal.  J Clin Pathol 1973;26:871-874. 

 25.  Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of 

low-density lipoprotein cholesterol in plasma, without use of the preparative 

ultracentrifuge.  Clin Chem 1972;18:499-502. 

 26.  Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan 

ID, et al. Non-invasive detection of endothelial dysfunction in children and 

adults at risk of atherosclerosis.  Lancet 1992;340:1111-1115. 

 27.  Dupont WD, Plummer WD, Jr. Power and sample size calculations. A review 

and computer program.  Controlled Clin Trials 1990;11:116-128. 

 28.  Graham IM, Daly LE, Refsum HM, Robinson K, Brattstrom LE, Ueland PM, et 

al. Plasma homocysteine as a risk factor for vascular disease. The European 

Concerted Action Project.  JAMA 1997;277:1775-1781. 

 29.  O' Callaghan P, Meleady R, Fitzgerald T. Smoking and plasma homocysteine.  

Eur Heart J 2002;23:1580-1586. 

 30.  Wilcken DEL. Homocysteine, smoking and vascular disease.  Eur Heart J 

2002;23:1559-1560. 

 

 

   

Clinical Science Immediate Publication. Published on 28 Nov 2003 as manuscript CS20030296

Copyright 2003 The Biochemical Society



   16

TABLE 1: Baseline characteristics of subjects 

 High 

homocysteine 

(n=26) 

Low 

homocysteine 

(n=16) 

P-value 

between 

groups1

Age (years) 49 ± 2 50 ± 2 NS 

Male/Female 18/8 11/5 NS 

Homocysteine (µmol/l) 15.6 ± 1.5 7.9 ± 0.6 < 0.001 

BMI (kg/m2) 28.1 ± 1.0 25.2 ± 2.1 NS 

Waist/hip ratio 0.90 ± 0.06 0.87 ± 0.02 NS 

SBP (mm/Hg) 125 ± 2 129 ± 4 NS 

DBP (mm/Hg) 81 ± 2 87 ± 2 NS 

Total cholesterol (mmol/l) 5.3 ± 0.1 5.4 ± 0.2 NS 

LDL cholesterol (mmol/l) 3.2 ± 0.2 3.4 ± 0.2 NS 

HDL cholesterol (mmol/l) 1.39 ± 0.07 1.36 ± 0.06 NS 

Triglycerides (mmol/l) 1.27 ± 0.17 1.29 ± 0.16 NS 

Creatinine (µmol/l) 91 ± 3 74 ± 3 < 0.001 

Red cell folate (ng/mL) 332 ± 21 425 ± 41 0.03 

Vitamin B6 (nmol/L) 39 ± 5 44 ± 5 NS 

Vitamin B12 (pg/mL) 360 ± 21 386 ± 31 NS 

Flow-mediated dilatation (%) 7.0 ± 0.6 6.6 ± 1.2 NS 

GTN-mediated dilatation (%) 20.4 ± 0.9 18.4 ± 1.7 NS 

Basal blood flow (ml3/min) 29.3 ± 5.0 23.1 ± 3.1 NS 

Reactive hyperaemia (%) 786 ± 118 650 ± 104 NS 

Values are Mean ± SEM. 1Unpaired t-test 
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TABLE 2 

Effects of treatment period on HCY, RCF, %FMD and %GTN 
  1st

Treatment 

period 

Visit 1 Visit 2 
∆1 

(Visit 2–1) 

2nd

Treatment 

period 

Visit 3 Visit 4 
∆2 

(Visit 4-3) 

Treatment-

period 

interaction1

Group 1 Placebo 14.9 ± 1.0 13.2 ± 0.9 -1.7 ± 0.50 Folic acid 13.6 ± 0.8 10.0 ± 0.7 -3.5 ± 0.6 
HCY 

Group 2 Folic acid 16.4 ± 3.0 9.8 ± 0.7 -6.6 ± 3.1 Placebo 10.3 ± 0.5 12.4 ± 1.0 2.1 ± 0.9 
NS 

         

        

        

  

Group 1 Placebo 338 ± 23 320 ± 29 -18 ± 19 Folic acid 352 ± 34 683 ± 52 331 ± 39 
RCF 

Group 2 Folic acid 326 ± 35 595 ± 37 269 ± 40 Placebo 499 ± 23 451 ± 48 -47 ± 48 
NS 

   

Group 1 Placebo 6.5 ± 0.7 5.3 ± 0.7 -1.2 ± 0.6 Folic acid 6.5 ± 0.7 6.3 ± 1.0 -0.2 ± 0.6 
%FMD 

Group 2 Folic acid 7.5 ± 1.1 8.7 ± 1.3 1.2 ± 1.1 Placebo 8.0 ± 1.1 7.9 ± 1.2 -0.1 ±0.8 
NS 

   

Group 1 Placebo 19.3 ± 1.2 19.0 ± 1.1 -0.3 ± 1.4 Folic acid 17.5 ± 1.0 19.7 ± 1.2 2.2 ± 1.3 
%GTN 

Group 2 Folic acid 21.6 ± 1.4 20.9 ± 2.0 -0.7 ± 1.7 Placebo 18.8 ± 1.4 20.5 ± 1.5 1.7 ± 1.5 
NS 

 

1 Unpaired t-test, ∆1 vs ∆2 for placebo and ∆1 vs ∆2 for folic acid. 
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FIGURE 1 
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Figure Legend: Mean (± SEM) flow-mediated dilatation (FMD) and glyceryl-

trinitrate mediated dilatation (GTNMD) at the end of the placebo and folic acid phases 

of supplementation.   
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