6,395 research outputs found

    Dynamics on networks of cluster states for globally coupled phase oscillators

    Get PDF
    Copyright © by Society for Industrial and Applied Mathematics. Unauthorized reproduction of this article is prohibited. Its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.Systems of globally coupled phase oscillators can have robust attractors that are heteroclinic networks. We investigate such a heteroclinic network between partially synchronized states where the phases cluster into three groups. For the coupling considered there exist 30 different three-cluster states in the case of five oscillators. We study the structure of the heteroclinic network and demonstrate that it is possible to navigate around the network by applying small impulsive inputs to the oscillator phases. This paper shows that such navigation may be done reliably even in the presence of noise and frequency detuning, as long as the input amplitude dominates the noise strength and the detuning magnitude, and the time between the applied pulses is in a suitable range. Furthermore, we show that, by exploiting the heteroclinic dynamics, frequency detuning can be encoded as a spatiotemporal code. By changing a coupling parameter we can stabilize the three-cluster states and replace the heteroclinic network by a network of excitable three-cluster states. The resulting “excitable network” has the same structure as the heteroclinic network and navigation around the excitable network is also possible by applying large impulsive inputs. We also discuss features that have implications for related models of neural activity

    The Selective Influence of Rhythmic Cortical versus Cerebellar Transcranial Stimulation on Human Physiological Tremor

    Get PDF
    The influence of central neuronal oscillators on human physiological tremor is controversial. To address this, transcranial alternating current stimulation (TACS) was delivered at peak tremor frequency to 12 healthy volunteers in a 2 × 2 crossover study. Two sites were stimulated [contralateral primary motor cortex (M1), vs ipsilateral cerebellum] while participants performed two types of tasks designed to probe the different manifestations of physiological tremor of the hand-kinetic and postural tremor. Tremor was measured by accelerometry. Cortical coherence with the accelerometry signal was also calculated in the absence of stimulation. The phase synchronization index, a measure of the phase entrainment of tremor, was calculated between stimulation and tremor waveforms. The amplitude modulation of tremor was similarly assessed. There was significant phase entrainment that was dependent both on tremor type and site of stimulation: M1 stimulation gave rise to phase entrainment of postural, but not kinetic, tremor, whereas cerebellar stimulation increased entrainment in both cases. There was no effect on tremor amplitude. Tremor accelerometry was shown to be coherent with the cortical EEG recorded during postural, but not kinetic, tremor. TACS modulates physiological tremor, and its effects are dependent both on tremor type and stimulation site. Accordingly, central oscillators play a significant role in two of the major manifestations of tremor in health.</p

    The BNP: the Roots of its Appeal

    Get PDF

    Assessing the Impacts of Changing Connectivity of Hydropower Dams on the Distribution of Fish Species in the 3S Rivers, a Tributary of the Lower Mekong

    Get PDF
    Hydropower plants (HPPs) create barriers across rivers and fragment aquatic ecosystems, river reaches and habitats. The reservoirs they create slow the flowing water and convert the riverine into lacustrine ecosystems. The barriers created by HPPs interrupt the seasonal migrations of many fish species, while the reservoirs drive away fish species that are dependent on flowing water habitats. This paper assesses the distribution of fish species in the 3S rivers—Sekong, Sesan and Sre Pok, in Cambodia, Laos and Viet Nam—using IUCN Red List-assessed species distribution by HydroBasin Level 8 from the freshwater reports of the Integrated Biodiversity Assessment Tool (IBAT) and their connectivity with the Mekong. There are currently 61 commissioned dams in the 3S basins and a further 2 under construction, 23 of which are larger than the 30 MW installed capacity. A further 24 HPPs are proposed or planned in these basins. The changes in connectivity caused by the dams are measured by adapting the River Class Connectivity Index (RCICLASS); the original connectivity of the 3S basin taking into account the two major waterfalls in the Sesan and Sre Pok rivers was estimated at 80.9%. With existing dams, the connectivity has been reduced to 23.5%, and with all planned dams, it is reduced further to 10.9%. The resulting re-distribution of fish species occurring throughout the 3S basins is explored, by focusing on migratory guilds and threatened and endemic fish species. With all dams built, it is predicted that the total numbers of species in HydroBasins above the dams will be reduced by 40–50%. The Threatened Species Index is estimated to fall from over 30 near the confluence of the three rivers to less than 10 above the lowest dams on the 3S rivers. The analysis demonstrates how widely available global and regional datasets can be used to assess the impacts of dams on fish biodiversity in this region

    Operational issues involving use of supplementary cooling towers to meet stream temperature standards with application to the Browns Ferry Nuclear Plant

    Get PDF
    A mixed mode cooling system is one which operates in either the open, closed, or helper (once-through but with the use of the cooling towers) modes. Such systems may be particularly economical where the need for supplementary cooling to meet environmental constraints on induced water temperature changes is seasonal or dependent upon other transient factors such as stream- flow. The issues involved in the use of mixed mode systems include the design of the open cycle and closed cycle portions of the cooling system, the specification of the environmental standard to be met, and the monitoring system and associated decision rules used to determine when mode changes are necessary. These issues have been examined in the context of a case study of TVA's Browns Ferry Nuclear Plant which utilizes the large quantity of site specific data reflecting conditions both with and without plant operation. The most important findings of this study are: (1) The natural temperature differences in the Tennessee River are of the same order of magnitude (50F) as the maximum allowed induced temperature increase. (2) Predictive estimates based on local hydrological and meteorological data are capable of accounting for 40% of the observed natural variability. (3) Available algorithms for plant induced temperature increases provide estimates within 1F of observed values except during periods of strong stratification. (4) A mixed mode system experiences only 10% of the capacity losses experienced by a totally closed system, (5) The capacity loss is relatively more sensitive to the environmental standard than to changes in cooling system design. (6) About one third of the capacity loss incurred using the mixed mode system is the result of natural temperature variations. This unnecessary loss may be halved by the use of predictive estimates for natural temperature differences

    Russian messianism: a historical and political analysis

    Get PDF
    This is an analysis of the nature and political significance of Russian messianism: the idea that the Russian people or the Russian State is the `chosen people' or the `chosen instrument'. I outline the genesis of the theory of Moscow, the Third Rome and discuss the ideas and activities of the nineteenth-century Slavophils, the pan-Slavists, Dostoevsky and Vladimir Solovyov. I examine the influence of messianism on Russian Communism, considering Berdiaev's views. The main part of the work investigates the rebirth of interest in Russian messianism in the Brezhnev period. I try to investigate the links between this cultural movement and the Russian nationalist elements within the political éite. My main sources for this are samizdat journals and articles, in particular the journal Veche, cultural journals such as Novyi mir, Molodaia gvardiia and Nash sovremennik, Party documents and éigré/ journals. I find that Russian messianism has been especially important at times when the country is in crisis: Russia is in Golgotha, but where there is suffering there is also redemption, not only for Russia but for humanity. It has by no means been always dominant in intellectual thought. It has had little influence (under either tsars or Communists) on the fields of nationality policy, policy towards religion or foreign policy. Today, as in the nineteenth century, its adherents can be opponents or supporters of the existing State structure. The growth of non-Russian nationalism under Gorbachov, combined with glasnost', has fuelled Russian nationalism. This is unlikely to be co-opted into the official ideology, because it would increase the dissatisfaction of the non-Russians

    Montage Matters:The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    Get PDF
    BACKGROUND: Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification.HYPOTHESIS: We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode.METHODS: We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 ΌA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings.RESULTS: Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor.CONCLUSION: The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols.</p

    The Hawaii Beef Industry: Situation and Outlook

    Get PDF

    Montage Matters:The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    Get PDF
    BACKGROUND: Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary "stimulating" electrode than the secondary "reference" electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification.HYPOTHESIS: We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return ("reference") electrode.METHODS: We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 ΌA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings.RESULTS: Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor.CONCLUSION: The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols.</p

    Sensitivity of ferry services to the Western Isles of Scotland to changes in wave and wind climate

    Get PDF
    PublishedJournal ArticleThis is the final version of the article. Available from AMS via the DOI in this record.The roughness of the seas is rarely mentioned as a major factor in the economic or social welfare of a region. In this study, the relationship between the ocean wave climate and the economy of the Western Isles of Scotland is examined. This sparsely populated region has a high dependency on marine activities, and ferry services provide vital links between communities. The seas in the region are among the roughest in the world during autumn and winter, however, making maintenance of a reliable ferry service both difficult and expensive. A deterioration in wave and wind climate either in response to natural variability or as a regional response to anthropogenic climate change is possible. Satellite altimetry and gale-frequency data are used to analyze the contemporary response of wave and wind climate to the North Atlantic Oscillation (NAO). The sensitivity of wave climate to the NAO extends to ferry routes that are only partially sheltered and are exposed to ocean waves; thus, the reliability of ferry services is sensitive to NAO. Any deterioration of the wave climate will result in a disproportionately large increase in ferry-service disruption. The impacts associated with an unusually large storm event that affected the region in January 2005 are briefly explored to provide an insight into vulnerability to future storm events. © 2013 American Meteorological Society.This research was largely supported by the Tyndall Centre for Climate Change Research project “Toward a vulnerability assessment for the UK coastline” (IT 1.15)
    • 

    corecore