1,438 research outputs found

    "What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments

    Full text link
    We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid of a caretaker travel back in time to understand the fundamental nature of matter. They visit Rutherford and Geiger in Manchester around 1911, who recount their famous experiment on the nucleus and show how particle detectors work. They travel forward in time to meet Lawrence at Berkeley around 1950, teaching them about the how and why of accelerators. Next, they visit Wu at DESY, Hamburg, around 1980, who explains the strong force. They end up in the LHC tunnel at CERN, Geneva, Switzerland in 2012. Two experimentalists tell them about colliders and our heroes watch live as the Higgs boson is produced and decays. The show was presented in English at Oxford University and University College London, as well as Padua University and ICTP Trieste. It was 1st performed in German at the Deutsche Museum, Bonn (5/'14). The show has eleven speaking parts and involves in total 20 people.Comment: 113 pages, 88 figures. An up to date version of the paper with high resolution pictures can be found at http://www.th.physik.uni-bonn.de/People/dreiner/Downloads/. In v2 the acknowledgements and a citation are correcte

    The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

    Get PDF
    AST/RO, a 1.7 m diameter telescope for astronomy and aeronomy studies at wavelengths between 200 and 2000 microns, was installed at the South Pole during the 1994-1995 Austral summer. The telescope operates continuously through the Austral winter, and is being used primarily for spectroscopic studies of neutral atomic carbon and carbon monoxide in the interstellar medium of the Milky Way and the Magellanic Clouds. The South Pole environment is unique among observatory sites for unusually low wind speeds, low absolute humidity, and the consistent clarity of the submillimeter sky. Four heterodyne receivers, an array receiver, three acousto-optical spectrometers, and an array spectrometer are installed. A Fabry-Perot spectrometer using a bolometric array and a Terahertz receiver are in development. Telescope pointing, focus, and calibration methods as well as the unique working environment and logistical requirements of the South Pole are described.Comment: 57 pages, 15 figures. Submitted to PAS

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening

    Get PDF
    Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.Fil: Centeno, Danilo C.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Osorio, Sonia. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Nunes Nesi, Adriano. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Bertolo, Ana L. F.. Cornell University; Estados UnidosFil: Carneiro, Raphael T.. Cornell University; Estados UnidosFil: Araújo, Wagner L.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Steinhauser, Marie Caroline. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Michalska, Justyna. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Rohrmann, Johannes. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Geigenberger, Peter. Technische Universitat München; AlemaniaFil: Oliver, Sandra N.. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Stitt, Mark. Max Planck Institute Of Molecular Plant Physiology; AlemaniaFil: Carrari, Fernando Oscar. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rose, Jocelyn K. C.. Cornell University; Estados UnidosFil: Fernie, Alisdair R.. Max Planck Institute Of Molecular Plant Physiology; Alemani

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    COVID-19:immunopathology, pathophysiological mechanisms, and treatment options

    Get PDF
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally despite the worldwide implementation of preventive measures to combat the disease. Although most COVID-19 cases are characterised by a mild, self-limiting disease course, a considerable subset of patients develop a more severe condition, varying from pneumonia and acute respiratory distress syndrome (ARDS) to multi-organ failure (MOF). Progression of COVID-19 is thought to occur as a result of a complex interplay between multiple pathophysiological mechanisms, all of which may orchestrate SARS-CoV-2 infection and contribute to organ-specific tissue damage. In this respect, dissecting currently available knowledge of COVID-19 immunopathogenesis is crucially important, not only to improve our understanding of its pathophysiology but also to fuel the rationale of both novel and repurposed treatment modalities. Various immune-mediated pathways during SARS-CoV-2 infection are relevant in this context, which relate to innate immunity, adaptive immunity, and autoimmunity. Pathological findings in tissue specimens of patients with COVID-19 provide valuable information with regard to our understanding of pathophysiology as well as the development of evidence-based treatment regimens. This review provides an updated overview of the main pathological changes observed in COVID-19 within the most commonly affected organ systems, with special emphasis on immunopathology. Current management strategies for COVID-19 include supportive care and the use of repurposed or symptomatic drugs, such as dexamethasone, remdesivir, and anticoagulants. Ultimately, prevention is key to combat COVID-19, and this requires appropriate measures to attenuate its spread and, above all, the development and implementation of effective vaccines.</p
    corecore