93 research outputs found

    Combining laser microdissection and microRNA expression profiling to unmask microRNA signatures in complex tissues

    Get PDF
    Neglecting tissue heterogeneity during the analysis of microRNA (miRNA) levels results in average signals from an unknown mixture of different cell types that are difficult to interpret. Here we demonstrate the technical requirements needed to obtain high-quality, quantitative miRNA expression infor- mation from tumor tissue compartments obtained by laser microdissection (LMD). Furthermore, we show the significance of disentangling tumor tissue heterogeneity by applying the newly developed protocols for combining LMD of tumor tissue compartments with RT-qPCR analysis to reveal compartment- specific miRNA expression signatures. An important advantage of this strategy is that the miRNA signature can be directly linked to histopatho logy. In summary, combining LMD and RT-qPCR is a powerful approach for spatial miRNA expression analysis in complex tissues, enabling discovery of disease mechanisms, biomarkers and drug candidates

    Tumor Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged

    Get PDF
    In established tumors, angiogenic endothelial cells (ECs) coexist next to “quiescent” EC in matured vessels. We hypothesized that angio-gene expression of B16.F10 melanoma would differ depending on the growth stage. Unraveling the spatiotemporal nature thereof is essential for drug regimen design aimed to affect multiple neovascularization stages. We determined the angiogenic phenotype—represented by 52 angio-genes—and vascular morphology of small, intermediate, and large s.c. growing mouse B16.F10 tumors and demonstrated that expression of these genes did not differ between the different growth stages. Yet vascular morphology changed dramatically from small vessels without lumen in small to larger vessels with increased lumen size in intermediate/large tumors. Separate analysis of these vascular morphologies revealed a significant difference in αSMA expression in relation to vessel morphology, while no relation with VEGF, HIF-1α, nor Dll4 expression levels was observed. We conclude that the tumor vasculature remains actively engaged in angiogenesis during B16.F10 melanoma outgrowth and that the major change in tumor vascular morphology does not follow molecular concepts generated in other angiogenesis models

    Reduced Tie2 in Microvascular Endothelial Cells Is Associated with Organ-Specific Adhesion Molecule Expression in Murine Health and Endotoxemia

    Get PDF
    Endothelial cells (ECs) in the microvasculature in organs are active participants in the pathophysiology of sepsis. Tyrosine protein kinase receptor Tie2 (Tek; Tunica interna Endothelial cell Kinase) is thought to play a role in their inflammatory response, yet data are inconclusive. We investigated acute endotoxemia-induced changes in the expression of Tie2 and inflammation-associated endothelial adhesion molecules E-selectin and VCAM-1 (vascular cell adhesion molecule-1) in kidneys and lungs in inducible, EC-specific Tie2 knockout mice. The extent of Tie2 knockout in healthy mice differed between microvascular beds, with low to absent expression in arterioles in kidneys and in capillaries in lungs. In kidneys, Tie2 mRNA dropped more than 70% upon challenge with lipopolysaccharide (LPS) in both genotypes, with no change in protein. In renal arterioles, tamoxifen-induced Tie2 knockout was associated with higher VCAM-1 protein expression in healthy conditions. This did not increase further upon challenge of mice with LPS, in contrast to the increased expression occurring in control mice. Also, in lungs, Tie2 mRNA levels dropped within 4 h after LPS challenge in both genotypes, while Tie2 protein levels did not change. In alveolar capillaries, where tamoxifen-induced Tie2 knockout did not affect the basal expression of either adhesion molecule, a 4-fold higher E-selectin protein expression was observed after exposure to LPS compared to controls. The here-revealed heterogeneous effects of absence of Tie2 in ECs in kidney and lung microvasculature in health and in response to acute inflammatory activation calls for further in vivo investigations into the role of Tie2 in EC behavior. </p

    Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice

    Get PDF
    Tyrosine-protein kinase receptor Tie2, also known as Tunica interna Endothelial cell Kinase or TEK plays a prominent role in endothelial responses to angiogenic and inflammatory stimuli. Here we generated a novel inducible Tie2 knockout mouse model, which targets mature (micro)vascular endothelium, enabling the study of the organ-specific contribution of Tie2 to these responses. Mice with floxed Tie2 exon 9 alleles (Tie2floxed/floxed) were crossed with end-SCL-Cre-ERT transgenic mice, generating offspring in which Tie2 exon 9 is deleted in the endothelial compartment upon tamoxifen-induced activation of Cre-recombinase (Tie2ΔE9). Successful deletion of Tie2 exon 9 in kidney, lung, heart, aorta, and liver, was accompanied by a heterogeneous, organ-dependent reduction in Tie2 mRNA and protein expression. Microvascular compartment-specific reduction in Tie2 mRNA and protein occurred in arterioles of all studied organs, in renal glomeruli, and in lung capillaries. In kidney, lung, and heart, reduced Tie2 expression was accompanied by a reduction in Tie1 mRNA expression. The heterogeneous, organ- and microvascular compartment-dependent knockout pattern of Tie2 in the Tie2floxed/floxed;end-SCL-Cre-ERT mouse model suggests that future studies using similar knockout strategies should include a meticulous analysis of the knockout extent of the gene of interest, prior to studying its role in pathological conditions, so that proper conclusions can be drawn

    Comparison of renal histopathology and gene expression profiles between severe COVID-19 and bacterial sepsis in critically ill patients

    Get PDF
    BACKGROUND: The mechanisms driving acute kidney injury (AKI) in critically ill COVID-19 patients are unclear. We collected kidney biopsies from COVID-19 AKI patients within 30 min after death in order to examine the histopathology and perform mRNA expression analysis of genes associated with renal injury. METHODS: This study involved histopathology and mRNA analyses of postmortem kidney biopsies collected from patients with COVID-19 (n = 6) and bacterial sepsis (n = 27). Normal control renal tissue was obtained from patients undergoing total nephrectomy (n = 12). The mean length of ICU admission-to-biopsy was 30 days for COVID-19 and 3–4 days for bacterial sepsis patients. RESULTS: We did not detect SARS-CoV-2 RNA in kidney biopsies from COVID-19-AKI patients yet lung tissue from the same patients was PCR positive. Extensive acute tubular necrosis (ATN) and peritubular thrombi were distinct histopathology features of COVID-19-AKI compared to bacterial sepsis-AKI. ACE2 mRNA levels in both COVID-19 (fold change 0.42, p = 0.0002) and bacterial sepsis patients (fold change 0.24, p < 0.0001) were low compared to control. The mRNA levels of injury markers NGAL and KIM-1 were unaltered compared to control tissue but increased in sepsis-AKI patients. Markers for inflammation and endothelial activation were unaltered in COVID-19 suggesting a lack of renal inflammation. Renal mRNA levels of endothelial integrity markers CD31, PV-1 and VE-Cadherin did not differ from control individuals yet were increased in bacterial sepsis patients (CD31 fold change 2.3, p = 0.0006, PV-1 fold change 1.5, p = 0.008). Angiopoietin-1 mRNA levels were downregulated in renal tissue from both COVID-19 (fold change 0.27, p < 0.0001) and bacterial sepsis patients (fold change 0.67, p < 0.0001) compared to controls. Moreover, low Tie2 mRNA expression (fold change 0.33, p = 0.037) and a disturbed VEGFR2/VEGFR3 ratio (fold change 0.09, p < 0.0001) suggest decreased microvascular flow in COVID-19. CONCLUSIONS: In a small cohort of postmortem kidney biopsies from COVID-19 patients, we observed distinct histopathological and gene expression profiles between COVID-19-AKI and bacterial sepsis-AKI. COVID-19 was associated with more severe ATN and microvascular thrombosis coupled with decreased microvascular flow, yet minimal inflammation. Further studies are required to determine whether these observations are a result of true pathophysiological differences or related to the timing of biopsy after disease onset. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03631-4

    Hemodynamic deterioration precedes onset of ventricular tachyarrhythmia after Heartmate II implantation

    Get PDF
    Background: Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. Case Presentation: A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. Conclusions: PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia

    Organ-Specific Differences in Endothelial Permeability-Regulating Molecular Responses in Mouse and Human Sepsis

    Get PDF
    In patients with sepsis-induced multi-organ dysfunction syndrome, diverging patterns of oedema formation and loss of function in organs such as lung and kidney suggest that endothelial permeability-regulating molecular responses are differentially regulated. This potential differential regulation has been insufficiently studied at the level of components of adherens and tight junctions. We hypothesized that such a regulation by endothelial cells in sepsis takes place in an organ-specific manner. We addressed our hypothesis by studying by quantitative real time polymerase chain reaction the expression of a predefined subset of EC permeability-related molecules (occludin, claudin-5, PV-1, CD-31, endomucin, Angiopoietin-1, Angiopoietin-2, Tie2, VEGFA, VEGFR1, VEGFR2, and VE-cadherin) in kidney and lung after systemic lipopolysacharide injection in mice, and in kidneys of patients who died of sepsis. We showed that baseline endothelial expression of permeability-related molecules differs in mouse kidney and lung. Moreover, we showed differential regulation of these molecules after lipopolysacharide injection in the two mouse organs. In lung we found a decrease in expression levels of molecules of the adherence and tight junctions complex and related signaling systems, compatible with increased permeability. In contrast, in kidney we found expression patterns of these molecules compatible with decreased permeability. Finally, we partially corroborated our findings in mouse kidney in human kidneys from septic patients. These findings may help to understand the clinical difference in the extent of oedema formation in kidney and lung in sepsis-associated organ failure

    Diagnosing Alzheimer's Disease from Circulating Blood Leukocytes Using a Fluorescent Amyloid Probe

    Get PDF
    BACKGROUND: Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials. OBJECTIVE: To develop a novel method for early Alzheimer's disease (AD) detection, we used blood leukocytes, that could act as "sentinels" after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy. METHODS: Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis. RESULTS: K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93. CONCLUSION: Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease

    The Nature of Working Memory for Braille

    Get PDF
    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents
    • …
    corecore