177 research outputs found

    Spectral Modelling of Star-Forming Regions in the Ultraviolet: Stellar Metallicity Diagnostics for High Redshift Galaxies

    Full text link
    The chemical composition of high redshift galaxies is an important property which gives clues to their past history and future evolution and yet is difficult to measure with current techniques. In this paper we investigate new metallicity indicators, based upon the strengths of stellar photospheric features at rest-frame ultraviolet wavelengths. By combining the evolutionary spectral synthesis code Starburst99 with the output from the non-LTE model atmosphere code WM-basic, we have developed a code that can model the integrated ultraviolet stellar spectra of star-forming regions at metallicities between 1/20 and twice solar. We use our models to explore a number of spectral regions that are sensitive to metallicity and clean of other spectral features. The most promising metallicity indicator is an absorption feature between 1935 A and 2020 A, which arises from the blending of numerous Fe III transitions. We compare our model spectra to observations of two well studied high redshift star-forming galaxies, MS1512-cB58 (a Lyman break galaxy at z = 2.7276), and Q1307-BM1163 (a UV-bright galaxy at z = 1.411). The profiles of the photospheric absorption features observed in these galaxies are well reproduced by the models. In addition, the metallicities inferred from their equivalent widths are in good agreement with previous determinations based on interstellar absorption and nebular emission lines. Our new technique appears to be a promising alternative, or complement, to established methods which have only a limited applicability at high redshifts.Comment: 18 pages, 12 figures, accepted for publication in the Astrophysical Journa

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    The Kinematics of Thick Disks in External Galaxies

    Full text link
    We present kinematic measurements of the thick and thin disks in two edge-on galaxies. We have derived stellar rotation curves at and above the galaxies' midplanes using Ca II triplet features measured with the GMOS spectrograph on Gemini North. In one galaxy, FGC 1415, the kinematics above the plane show clear rotation that lags that of the midplane by ~20-50%, similar to the behavior seen in the Milky Way. However, the kinematics of the second galaxy, FGC 227, are quite different. The rotation above the plane is extremely slow, showing <25% of the rotation speed of the stars at the midplane. We decompose the observed rotation curves into a superposition of thick and thin disk kinematics, using 2-dimensional fits to the galaxy images to determine the fraction of thick disk stars at each position. We find that the thick disk of FGC 1415 rotates at 30-40% of the rotation speed of the thin disk. In contrast, the thick disk of FGC 227 is very likely counter-rotating, if it is rotating at all. These observations are consistent with the velocity dispersion profiles we measure for each galaxy. The detection of counter-rotating thick disks conclusively rules out models where the thick disk forms either during monolithic collapse or from vertical heating of a previous thin disk. Instead, the data strongly support models where the thick disk forms from direct accretion of stars from infalling satellites.Comment: 13 pages, 10 figures. Accepted for publication in Ap

    A New Giant Stellar Structure in the Outer Halo of M31

    Full text link
    The Sloan Digital Sky Survey has revealed an overdensity of luminous red giant stars ~ 3 degrees (40 projected kpc) to the northeast of M31, which we have called Andromeda NE. The line-of-sight distance to Andromeda NE is within approximately 50 kpc of M31; Andromeda NE is not a physically unrelated projection. Andromeda NE has a g-band absolute magnitude of ~ -11.6 and central surface brightness of ~ 29 mag/sq.arcsec, making it nearly two orders of magnitude more diffuse than any known Local Group dwarf galaxy at that luminosity. Based on its distance and morphology, Andromeda NE is likely undergoing tidal disruption. Andromeda NE's red giant branch color is unlike that of M31's present-day outer disk or the stellar stream reported by Ibata et al. (2001), arguing against a direct link between Andromeda NE and these structures. However, Andromeda NE has a red giant branch color similar to that of the G1 clump; it is possible that these structures are both material torn off of M31's disk in the distant past, or that these are both part of one ancient stellar stream.Comment: 11 pages, 3 figures; ApJ Letters accepted versio

    Probing the statistical properties of Anderson localization with quantum emitters

    Get PDF
    Wave propagation in disordered media can be strongly modified by multiple scattering and wave interference. Ultimately, the so-called Andersonlocalized regime is reached when the waves become strongly confined in space. So far, Anderson localization of light has been probed in transmission experiments by measuring the intensity of an external light source after propagation through a disordered medium. However, discriminating between Anderson localization and losses in these experiments remains a major challenge. In this paper, we present an alternative approach where we use quantum emitters embedded in disordered photonic crystal waveguides as light sources. Anderson-localized modes are efficiently excited and the analysis of the photoluminescence spectra allows us to explore their statistical properties, for example the localization length and average loss length. With increasing the amount of disorder induced in the photonic crystal, we observe a pronounced increase in the localization length that is attributed to changes in the local density of states, a behavior that is in stark contrast to entirely random systems. The analysis may pave the way for accurate models and the control of Anderson localization in disordered photonic crystalsWe thank P T Kristensen and N A Mortensen for fruitful discussions on the simulations and theoretical model and gratefully acknowledge financial support from the Villum Foundation, the Danish Council for Independent Research (Natural Sciences and Technology and Production Sciences) and the European Research Council (ERC consolidator grant). LSFP acknowledges financial support from the Spanish MICINN Consolider Nanolight project (CSD2007-00046

    NIRSpec, The Near-ir Multi-object Spectrograph For JWST

    Get PDF
    NIRSpec will be the first slit-based astronomical multi-object spectrograph to fly in space, and is designed to provide spectra of faint objects over the near-infrared 1.0 - 5.0 micron wavelength range at spectral resolutions of R=100, R=1000 and R=2700. The instrument's all-reflective wide-field optics, together with its novel MEMS-based programmable micro-shutter array slit selection device and its large format low-noise HgCdTe detector arrays, combine to allow simultaneous observations of >100 objects within a 3.4 x 3.5 arcmin field of view with unprecedented sensitivity. A selectable 3 x 3 arcsec Integral Field Unit and five fixed slits are also available for detailed spectroscopic studies of single objects. NIRSpec is being built for the European Space Agency (ESA) by EADS Astrium as part of ESA's contribution to the JWST mission. The NIRSpec micro-shutter and detector arrays are provided by NASA/GSFC
    • 

    corecore