334 research outputs found

    New records of marine invertebrates from Ascension Island (central Atlantic)

    Get PDF
    The sea anemone Telmatactis forskalii, the zoanthid Isaurus tuberculatus, the nemertine Baseodiscus delineatus, the echinoderms Ophiocoma wendtii and Mithrodia clavigera, the molluscs Colubraria canariensis, Glyphepithema turtoni, Tonna pennata, Trivia candidula, Melanella eburnea, Melanella n.sp., Echineulima leucophaes, Stylocheilus striatus, Limaria hians, Pteria hirundo and Callistoctopus macropus, and the crustaceans Tetraclitella sp., Oxynaspis celata, Thor amboinensis and Parribacus antarcticus are recorded from Ascension Island for the first time. A new depth record is given for the sea anemone Telmatactis cricoides. An undescribed shrimp species of the genus Lysmata and the shrimp Lysmata moorei were observed to clean fish at night.info:eu-repo/semantics/publishedVersio

    A Special Issue (Part-II): mafic-ultramafic rocks andalkaline-carbonatitic magmatism and associated hydrothermalmineralization – dedication to Lia N. Kogarko

    Get PDF
    Thisisthesecondpartofatwo-volumespecialis- sue of Open Geoscience (formerly Central European Jour- nal of Geosciences) that aims to be instrumental in pro- viding an update of Mac-Ultramac Rocks and Alkaline

    A massive cluster of Red Supergiants at the base of the Scutum-Crux arm

    Full text link
    We report on the unprecedented Red Supergiant (RSG) population of a massive young cluster, located at the base of the Scutum-Crux Galactic arm. We identify candidate cluster RSGs based on {\it 2MASS} photometry and medium resolution spectroscopy. With follow-up high-resolution spectroscopy, we use CO-bandhead equivalent width and high-precision radial velocity measurements to identify a core grouping of 26 physically-associated RSGs -- the largest such cluster known to-date. Using the stars' velocity dispersion, and their inferred luminosities in conjuction with evolutionary models, we argue that the cluster has an initial mass of ∌\sim40,000\msun, and is therefore among the most massive in the galaxy. Further, the cluster is only a few hundred parsecs away from the cluster of 14 RSGs recently reported by Figer et al (2006). These two RSG clusters represent 20% of all known RSGs in the Galaxy, and now offer the unique opportunity to study the pre-supernova evolution of massive stars, and the Blue- to Red-Supergiant ratio at uniform metallicity. We use GLIMPSE, MIPSGAL and MAGPIS survey data to identify several objects in the field of the larger cluster which seem to be indicative of recent region-wide starburst activity at the point where the Scutum-Crux arm intercepts the Galactic bulge. Future abundance studies of these clusters will therefore permit the study of the chemical evolution and metallicity gradient of the Galaxy in the region where the disk meets the bulge.Comment: 49 pages, 22 figures. Accepted for publication in ApJ. Version with hi-res figures can be found at http://www.cis.rit.edu/~bxdpci/RSGC2.pd

    Direct Observations of the Ionizing Star in the UC HII Region G29.96-0.02: A Strong Constraint on the Stellar Birth Line for Massive Stars

    Get PDF
    We have observed the ultracompact HII region G29.96-0.02 in the near infrared J, H, and K bands and in the Br-gamma line. By comparison with radio observations, we determine that the extinction to the nebula is AK = 2.14 with a 3 sigma uncertainty of 0.25. We identify the ionizing star and determine its intrinsic K magnitude. The star does not have an infrared excess and so appears to be no longer accreting. The K magnitude and the bolometric luminosity allow us to place limits on the location of the ionizing star in the HR diagram. The 3 sigma upper limit on the effective temperature of the ionizing star is 42500 K. We favor a luminosity appropriate for star with a mass in excess of about 60 solar masses. The limit on the temperature and luminosity exclude stars on the ZAMS and stars within 10^6 yr of the ZAMS. Since the age of the UC HII region is estimated to be only about 10^5 yr, we suggest that this is direct evidence that the stellar birth line for massive stars at twice solar metallicity must be significantly redder than the ZAMS.Comment: 42 pages; LaTex; 11 Postscript figures; accepted for publication in Ap

    The Unusual Infrared Object HDF-N J123656.3+621322

    Get PDF
    We describe an object in the Hubble Deep Field North with very unusual near-infrared properties. It is readily visible in Hubble Space Telescope NICMOS images at 1.6um and from the ground at 2.2um, but is undetected (with signal-to-noise <~ 2) in very deep WFPC2 and NICMOS data from 0.3 to 1.1um. The f_nu flux density drops by a factor >~ 8.3 (97.7% confidence) from 1.6 to 1.1um. The object is compact but may be slightly resolved in the NICMOS 1.6um image. In a low-resolution, near-infrared spectrogram, we find a possible emission line at 1.643um, but a reobservation at higher spectral resolution failed to confirm the line, leaving its reality in doubt. We consider various hypotheses for the nature of this object. Its colors are unlike those of known galactic stars, except perhaps the most extreme carbon stars or Mira variables with thick circumstellar dust shells. It does not appear to be possible to explain its spectral energy distribution as that of a normal galaxy at any redshift without additional opacity from either dust or intergalactic neutral hydrogen. The colors can be matched by those of a dusty galaxy at z >~ 2, by a maximally old elliptical galaxy at z >~ 3 (perhaps with some additional reddening), or by an object at z >~ 10 whose optical and 1.1um light have been suppressed by the intergalactic medium. Under the latter hypothesis, if the luminosity results from stars and not an AGN, the object would resemble a classical, unobscured protogalaxy, with a star formation rate >~ 100 M_sun/yr. Such UV-bright objects are evidently rare at 2 < z < 12.5, however, with a space density several hundred times lower than that of present-day L* galaxies.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, LaTeX, with 7 figures (8 files); citations & references updated + minor format change

    The Radio Properties of Composite LINER/HII Galaxies

    Get PDF
    Arcsec-resolution VLA observations -- newly obtained as well as published -- of 40 nearby galaxies are discussed, completing a study of the radio properties of a magnitude-limited sample of nearby galaxies of the composite LINER/HII type. Our results reveal an overall detection rate of at least 25% AGN candidates among these composite sources. The general properties of these AGN candidates, as compared to non-AGN composite sources and HII galaxies, are discussed.Comment: Accepted for publication in ApJ

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is ≈\approx 10−4^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    The APOGEE-2 Survey of the Orion Star Forming Complex: I. Target Selection and Validation with early observations

    Full text link
    The Orion Star Forming Complex (OSFC) is a central target for the APOGEE-2 Young Cluster Survey. Existing membership catalogs span limited portions of the OSFC, reflecting the difficulty of selecting targets homogeneously across this extended, highly structured region. We have used data from wide field photometric surveys to produce a less biased parent sample of young stellar objects (YSOs) with infrared (IR) excesses indicative of warm circumstellar material or photometric variability at optical wavelengths across the full 420 square degrees extent of the OSFC. When restricted to YSO candidates with H < 12.4, to ensure S/N ~100 for a six visit source, this uniformly selected sample includes 1307 IR excess sources selected using criteria vetted by Koenig & Liesawitz and 990 optical variables identified in the Pan-STARRS1 3π\pi survey: 319 sources exhibit both optical variability and evidence of circumstellar disks through IR excess. Objects from this uniformly selected sample received the highest priority for targeting, but required fewer than half of the fibers on each APOGEE-2 plate. We fill the remaining fibers with previously confirmed and new color-magnitude selected candidate OSFC members. Radial velocity measurements from APOGEE-1 and new APOGEE-2 observations taken in the survey's first year indicate that ~90% of the uniformly selected targets have radial velocities consistent with Orion membership.The APOGEE-2 Orion survey will include >1100 bona fide YSOs whose uniform selection function will provide a robust sample for comparative analyses of the stellar populations and properties across all sub-regions of Orion.Comment: Accepted for publication in ApJ
    • 

    corecore