52 research outputs found

    Daily rhythmicity of high affinity copper transport

    Get PDF
    A differential demand for copper (Cu) of essential cupro-proteins that act within the mitochondrial and chloroplastal electronic transport chains occurs along the daily light/dark cycles. This requires a fine-tuned spatiotemporal regulation of Cu delivery, becoming especially relevant under non-optimal growth conditions. When scarce, Cu is imported through plasma membrane-bound high affinity Cu transporters (COPTs) whose coding genes are transcriptionally induced by the SPL7 transcription factor. Temporal homeostatic mechanisms are evidenced by the presence of multiple light- and clock-responsive regulatory cis elements in the promoters of both SPL7 and its COPT targets. A model is presented here for such temporal regulation that is based on the synchrony between the basal oscillatory pattern of SPL7 and its targets, such as COPT2. Conversely, Cu feeds back to coordinate intracellular Cu availability on the SPL7-dependent regulation of further Cu acquisition. This occurs via regulation at COPT transporters. Moreover, exogenous Cu affects several circadian-clock components, such as the timing of GIGANTEA transcript abundance. Together we propose that there is a dynamic response to Cu that is integrated over diurnal time to maximize metabolic efficiency under challenging conditions

    Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis

    Get PDF
    24 Pags., 9 Figs., 2 Tabls., with Supplemental Data (15 Figs., 3 Tabls., 1 Method, 1 Data Set).The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.We acknowledge postdoctoral fellowships to M.B. from the Alexander von Humboldt Foundation and the Spanish Ministry of Science and Innovation; a Deutsche Forschungsgemeinshaft Heisenberg fellowship and funding from the FRONTIERS program at the University of Heidelberg, Germany, and the European Union InP Public Health Impact of Long-Term, Low-Level Mixed Element Exposure in Susceptible Population Strata (FOOD-CT-2006-016253) to U.K.; a grant from the National Science Foundation (IOS-0919739) to E.L.C.; a postdoctoral fellowship from the Spanish Foundation of Science and Technology (MEC-FECYT) to D.C.; National Institutes of Health Grant GM42143 to S.S.M.; and support from the University of California, Los Angeles–Department of Energy Institute for Genomics and Proteomics under Contract DE-FC02-02ER63421 to M.P.Peer reviewe

    Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta

    Get PDF
    Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence

    The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis

    Get PDF
    Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral transition in dependence of miR156 and, accordingly, transgenics constitutively over-expressing this microRNA are delayed in flowering. To elaborate their roles in Arabidopsis shoot development, we analysed two of the 11 miR156 regulated Arabidopsis SBP-box genes, i.e. the likely paralogous genes SPL9 and SPL15. Single and double mutant phenotype analysis showed these genes to act redundantly in controlling the juvenile-to-adult phase transition. In addition, their loss-of-function results in a shortened plastochron during vegetative growth, altered inflorescence architecture and enhanced branching. In these aspects, the double mutant partly phenocopies constitutive MIR156b over-expressing transgenic plants and thus a major contribution to the phenotype of these transgenics as a result of the repression of SPL9 and SPL15 is strongly suggested

    SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens

    Get PDF
    Cryptochromes are blue light absorbing photoreceptors found in many organisms and involved in numerous developmental processes. At least two highly similar cryptochromes are known to affect branching during gametophytic development in the moss Physcomitrella patens. We uncovered a relationship between these cryptochromes and the expression of particular members of the SBP-box genes, a plant specific transcription factor family. Transcript levels of the respective moss SBP-box genes, all belonging to the LG1-subfamily, were found to be dependent, albeit not exclusively, on blue light. Moreover, disruptant lines generated for two moss representatives of this SBP-box gene subfamily, both showed enhanced caulonema side branch formation, a phenotype opposite to that of the ppcry1a/1b double disruptant line. In this report we show that PpCRY1a and PpCRY1b act negatively on the transcript levels of several related moss SBP-box genes and that at least PpSBP1 and PpSBP4 act as negative regulators of side branch formation

    Change, agency, and boundary spanning in dynamic contexts

    No full text
    Even before the global pandemic, it had become a cliché to state that we are living in uncertain and dynamic times. Then a virus emerged to hammer home the truth in that claim. Nearly everything in higher education shifted online overnight, disrupting practices and policies that had long been considered stable and reliable in teaching, learning, and academic development..

    Characterization of the FIDDLEHEAD

    No full text
    • 

    corecore