44 research outputs found

    Aspherical Explosion Models for SN 1998bw/GRB 980425

    Get PDF
    The recent discovery of the unusual supernova SN1998bw and its apparent correlation with the gamma-ray burst GRB 980425 has raised new issues concerning both the GRB and supernovae. Although the spectra resemble those of TypeIc supernovae, there are distinct differences at early times and SN1998bw appeared to be unusually bright and red at maximum light. The apparent expansion velocities inferred by the Doppler shift of (unidentified) absorption features appeared to be high, making SN1998bw a possible candidate for a "hypernova" with explosion energies between 20 and 50E51 erg and ejecta masses in excess of 6 - 15 M_o. Based on light curve calculations for aspherical explosions and guided by the polarization observations of "normal" SNIc and related events, we present an alternative picture that allows SN1998bw to have an explosion energy and ejecta mass consistent with core collapse supernovae (although at the 'bright' end). We show that the LC of SN1998bw can be understood as result of an aspherical explosion along the rotational axis of a basically spherical, non-degenerate C/O core of massive star with an explosion energy of 2foe and a total ejecta mass of 2 M_o if it is seen from high inclinations with respect to the plane of symmetry. In this model, the high expansion velocities are a direct consequence of an aspherical explosion which, in turn, produces oblate iso-density contours. It suggests that the fundamental core-collapse explosion process itself is strongly asymmetric.Comment: 12 pages, 8 figures, latex, aas2pp4.sty, submitted to Ap

    X- and Gamma-Ray Flashes from Type Ia Supernovae?

    Get PDF
    We investigate two potential mechanisms that will produce X-ray and gamma-ray flashes from Type Ia supernovae (SN-Ia). The mechanisms are the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf and the interaction of the rapidly expanding envelope with an accretion disk. Based on the delayed-detonation scenario and detailed radiation-hydro calculation which include nuclear networks, we find that both mechanisms produce ~1 second flashes of high energy radiation with peak luminosities of 10^48 to 10^50 erg/sec with fast rises and exponential declines. The X- and gamma-ray visibility of a SN-Ia will depend strongly on self absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation towards the observer. Such X-ray and gamma-ray flashes could be detected as triggered events by Gamma-Ray Burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3,000 km/s. For BATSE about 12.9+-3.6 nearby SNe Ia should have been detected, but only 0.8+-0.7 non-coincidental matches have been found. With the HETE and Swift satellites, we expect to see 5.6+-1.3 SN-Ia flashes from known nearby SNe Ia but, yet, no SN-Ia flashes were detected. These place observational limits that the bolometric peak luminosity of SN-Ia Flashes must be less ~10^46 erg/s. We attribute the difference between theory and observational limits to the absorption of the X- and gamma-rays by the accretion disk of large scale height or common envelope that would be smothering the white dwarf.Comment: Astrophysical Journal, in pres

    SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology

    Full text link
    HET Optical spectra covering the evolution from about 6 days before to about 5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the "Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and narrow SiII lines, and for a period of at least 10 days beginning around maximum light these profiles do not change in width or depth and they indicate a constant expansion velocity of ~10,600 km/s. We analyzed the observations based on detailed radiation dynamical models in the literature. Whereas delayed detonation and deflagration models have been used to explain the majority of SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an unvarying line profile. Pulsating delayed detonations and merger scenarios form shell-like density structures with properties mostly related to the mass of the shell, M_shell, and we discuss how these models may explain the observed SiII line evolution; however, these models are based on spherical calculations and other possibilities may exist. SN 2005hj is consistent with respect to the onset, duration, and velocity of the plateau, the peak luminosity and, within the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun. Our analysis suggests a distinct class of events hidden within the Branch-normal SNe Ia. If the predicted relations between observables are confirmed, they may provide a way to separate these two groups. We discuss the implications of two distinct progenitor classes on cosmological studies employing SNe Ia, including possible differences in the peak luminosity to light curve width relation.Comment: ApJ accepted, 31 page

    Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by

    Get PDF
    Near-infrared (NIR) spectra of the subluminous Type Ia supernova SN 1999by are presented that cover the time evolution from about 4 days before to 2 weeks after maximum light. Analysis of these data was accomplished through the construction of an extended set of delayed detonation (DD) models covering the entire range of normal to subluminous SNe Ia. The explosion, light curves, and time evolution of the synthetic spectra were calculated self-consistently for each model, with the only free parameters being the initial structure of the white dwarf and the description of the nuclear burning front during the explosion. From these, one model was selected for SN 1999by by matching the synthetic and observed optical light curves, principally the rapid brightness decline. DD models require a minimum amount of burning during the deflagration phase, which implies a lower limit for the 56Ni mass of about 0.1 M☉ and consequently a lower limit for the SN brightness. The models that best match the optical light curve of SN 1999by were those with a 56Ni production close to this theoretical minimum. The data are consistent with little or no interstellar reddening [E(B-V) ≀ 0.12 mag], and we derive a distance of 11 ± 2.5 Mpc for SN 1999by, in agreement with other estimates. Without any modification, the synthetic spectra from this subluminous model match reasonably well the observed IR spectra taken on 1999 May 6, 10, 16, and 24. These dates correspond roughly to -4, 0, 6, and 14 days after maximum light. Prior to maximum, the NIR spectra of SN 1999by are dominated by products of explosive carbon burning (O, Mg) and Si. Spectra taken after maximum light are dominated by products of incomplete Si burning. Unlike the behavior of normal Type Ia SNe, lines from iron-group elements begin to show up only in our last spectrum taken about 2 weeks after maximum light. The implied distribution of elements in velocity space agrees well with the DD model predictions for a subluminous SN Ia. Regardless of the explosion model, the long duration of the phases dominated by layers of explosive carbon and oxygen burning argues that SN 1999by was the explosion of a white dwarf at or near the Chandrasekhar mass. The good agreement between the observations and the models without fine-tuning a large number of free parameters suggests that DD models are a good description of at least subluminous Type Ia SNe. Pure deflagration scenarios or mergers are unlikely, and helium-triggered explosions can be ruled out. However, problems for DD models still remain, since the data seem to be at odds with recent three-dimensional models of the deflagration phase that predict significant mixing of the inner layers of the white dwarf prior to detonation. Possible solutions include the effects of rapid rotation on the propagation of nuclear flames during the explosive phase of burning or extensive burning of carbon just prior to the runaway

    SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova?

    Get PDF
    We present observations of the Type Ia supernova 2003du obtained with the Hobby-Eberly Telescope and report the detection of a high-velocity component in the Ca II infrared triplet near 8000 Å, similar to features previously observed in SN 2000cx and SN 2001el. This feature exhibits a large expansion velocity (≈18,000 km s-1), which is nearly constant between -7 and +2 days relative to maximum light and disappears shortly thereafter. Other than this feature, the spectral evolution and light curve of SN 2003du resemble those of a normal SN Ia. We consider a possible origin for this high-velocity Ca II line in the context of a self-consistent spherical delayed-detonation model for the supernova. We find that the Ca II feature can be caused by a dense shell formed when circumstellar material of solar abundance is overrun by the rapidly expanding outermost layers of the SN ejecta. Model calculations show that the optical and infrared spectra are remarkably unaffected by the circumstellar interaction and the resulting shell. In particular, no hydrogen lines are detectable in either absorption or emission after the phase of dynamic interaction. The only qualitatively different features in the model spectra are the strong, high-velocity feature in the Ca II IR triplet around 8000 Å and a somewhat weaker O I feature near 7,300 Å. The Doppler shift and time evolution of these features provides an estimate for the amount of accumulated matter (decreasing Doppler shift with increasing shell mass) and also an indication of the mixing within the dense shell. For high shell masses (≈5 × 10-2 M☉), the high-velocity component of the Ca II line merges with the photospheric line forming a broad feature. A cutoff of the blue wings of strong, unblended lines (particularly the Si II feature at about 6,000 Å) may also be observable for larger shell masses. The model SN Ia light curves are little effected except at very early times when the shell is partially optically thick because of Thomson scattering, resulting in larger (B-V) colors by up to 0.3 mag. We apply these diagnostic tools to SN 2003du and infer that about 2 × 10-2 M☉ of solar abundance material may have accumulated in a shell prior to the observations. Furthermore, in this interpretation, the early light-curve data imply that the circumstellar material was originally very close to the progenitor system, perhaps from an accretion disk, Roche lobe, or common envelope. Because of the observed confinement of Ca II in velocity space and the lack of ongoing interaction inferred from the light curve, the matter cannot be placed in the outer layers of the exploding white dwarf star or related to a recent period of high mass loss in the progenitor system prior to the explosion. We note that the signatures of circumstellar interaction could be rather common in Type Ia supernovae and may have eluded discovery because optical spectra often do not extend significantly beyond 7500 Å

    Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts

    Get PDF
    We outline the possible physical processes, associated timescales, and energetics that could lead to the production of pulsars, jets, asymmetric supernovae, and weak gamma-ray bursts in routine circumstances and to a magnetar and perhaps stronger gamma-ray burst in more extreme circumstances in the collapse of the bare core of a massive star. The production of a LeBlanc-Wilson MHD jet could provide an asymmetric supernova and result in a weak gamma-ray burst when the jet accelerates down the stellar density gradient of a hydrogen-poor photosphere. The matter-dominated jet would be formed promptly, but requires 5 to 10 s to reach the surface of the progenitor of a Type Ib/c supernova. During this time, the newly-born neutron star could contract, spin up, and wind up field lines or turn on an alpha-Omega dynamo. In addition, the light cylinder will contract from a radius large compared to the Alfven radius to a size comparable to that of the neutron star. This will disrupt the structure of any organized dipole field and promote the generation of ultrarelativistic MHD waves (UMHDW) at high density and Large Amplitude Electromagnetic Waves (LAEMW) at low density. The generation of the these waves would be delayed by the cooling time of the neutron star about 5 to 10 seconds, but the propagation time is short so the UMHDW could arrive at the surface at about the same time as the matter jet. In the density gradient of the star and the matter jet, the intense flux of UMHDW and LAEMW could drive shocks, generate pions by proton-proton collision, or create electron/positron pairs depending on the circumstances. The UMHDW and LAEMW could influence the dynamics of the explosion and might also tend to flow out the rotation axis to produce a collimated gamma-ray burst.Comment: 31 pages, LaTeX, revised for referee comments, accepted for ApJ, July 10 issu

    Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-velocity Ejecta

    Full text link
    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v \approx 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v \approx 18,000-25,000 km/s) with high CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak and rotated polarization angle of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the spherical shell model, disfavor a toroid, and find a best fit with the clumped shell. We show further that different geometries can be more clearly discriminated if observations are obtained from several different lines of sight.Comment: 14 pages (emulateapj5) plus 18 figures, accepted by The Astrophysical Journa

    The Chemical Distribution in a Subluminous Type Ia Supernova: Hubble Space Telescope Images of the SN 1885 Remnant

    Get PDF
    SN 1885 was a probable subluminous SN Ia that occurred in the bulge of the Andromeda galaxy, M31, at a projected location 16\u27\u27 from the nucleus. Here we present and analyze Hubble Space Telescope images of the SN 1885 remnant seen in absorption against the M31 bulge via the resonance lines of Ca I, Ca II, Fe I, and Fe II. Viewed in Ca II H and K line absorption, the remnant appears as a nearly black circular spot with an outermost angular radius of 0.40\u27\u27 ± 0.025\u27\u27, implying a maximum linear radius of 1.52 ± 0.15 pc at M31\u27s estimated distance of 785 ± 30 kpc and hence a 120 yr average expansion velocity of 12,400 ± 1400 km s-1. The strongest Ca II absorption is organized in a broken ring structure with a radius of 0.2\u27\u27 (=6000 km s-1) with several apparent absorption clumps of an angular size around that of the image pixel scale of 0.05\u27\u27 (=1500 km s-1). Ca I and Fe I absorption structures appear similar except for a small Fe I absorption peak displaced 0.1\u27\u27 off-center of the Ca II structure by a projected velocity of about 3000 km s-1. Analyses of these images using off-center, delayed-detonation models suggest a low 56Ni production similar to the subluminous SN Ia explosion of SN 1986G. The strongly lopsided images of Ca I and Fe I can be understood as resulting from an aspherical chemical distribution, with the best agreement found using an off-center model viewed from an inclination of ~60°. The images require a central region of no or little Ca but with iron group elements indicative for burning under sufficiently high densities for electron capture to take place, i.e., burning prior to a significant preexpansion of the WD

    Signature of Electron Capture in Iron‐rich Ejecta of SN 2003du

    Get PDF
    Late-time near-infrared and optical spectra of the normal-bright Type Ia supernova 2003du about 300 days after the explosion are presented. At this late epoch, the emission profiles of well-isolated [Fe II] lines (in particular that of the strong 1.644 ÎŒm feature) trace out the global kinematic distribution of radioactive material in the expanding supernova ejecta. In SN 2003du, the 1.644 ÎŒm [Fe II] line seems to show a flat-topped profile, indicative of a thick but hollow-centered expanding shell, rather than a strongly peaked profile that would be expected from a center-filled distribution. Based on detailed models for exploding Chandrasekhar-mass white dwarfs, we show that the feature is consistent with spherical explosion models. Our model predicts a central region of nonradioactive electron capture elements up to 2500-3000 km s-1 as a consequence of burning under high density and an extended region of radioactive 56Ni up to 9000-10,000 km s-1. Furthermore, our analysis indicates that the 1.644 ÎŒm [Fe II] line profile is not consistent with strong mixing between the regions of electron-capture isotopes and the 56Ni layers, as is predicted by detailed three-dimensional models for nuclear deflagration fronts. We discuss the possibility that the flat-topped profile could be produced as a result of an infrared catastrophe and conclude that such an explanation is unlikely. We discuss the limitations of our analysis and place our results into context by comparison with constraints on the distribution of radioactive 56Ni in other SNe Ia and briefly discuss the potential implications of our result for the use of SNe Ia as cosmological standard candles
    corecore