We outline the possible physical processes, associated timescales, and
energetics that could lead to the production of pulsars, jets, asymmetric
supernovae, and weak gamma-ray bursts in routine circumstances and to a
magnetar and perhaps stronger gamma-ray burst in more extreme circumstances in
the collapse of the bare core of a massive star. The production of a
LeBlanc-Wilson MHD jet could provide an asymmetric supernova and result in a
weak gamma-ray burst when the jet accelerates down the stellar density gradient
of a hydrogen-poor photosphere. The matter-dominated jet would be formed
promptly, but requires 5 to 10 s to reach the surface of the progenitor of a
Type Ib/c supernova. During this time, the newly-born neutron star could
contract, spin up, and wind up field lines or turn on an alpha-Omega dynamo. In
addition, the light cylinder will contract from a radius large compared to the
Alfven radius to a size comparable to that of the neutron star. This will
disrupt the structure of any organized dipole field and promote the generation
of ultrarelativistic MHD waves (UMHDW) at high density and Large Amplitude
Electromagnetic Waves (LAEMW) at low density. The generation of the these waves
would be delayed by the cooling time of the neutron star about 5 to 10 seconds,
but the propagation time is short so the UMHDW could arrive at the surface at
about the same time as the matter jet. In the density gradient of the star and
the matter jet, the intense flux of UMHDW and LAEMW could drive shocks,
generate pions by proton-proton collision, or create electron/positron pairs
depending on the circumstances. The UMHDW and LAEMW could influence the
dynamics of the explosion and might also tend to flow out the rotation axis to
produce a collimated gamma-ray burst.Comment: 31 pages, LaTeX, revised for referee comments, accepted for ApJ, July
10 issu