156 research outputs found

    The Therapeutic Potential of D-Amino Acid Oxidase (DAAO) Inhibitors

    Get PDF
    D-amino acid oxidase (DAAO) is a flavoenzyme that degrades D-amino acids through the process of oxidative deamination. DAAO regulation of D-amino acid levels has been associated with several physiological processes ranging from hormone secretion to synaptic transmission and cognition. Recent genetic studies have identified a mutation on chromosome 13 in schizophrenia patients that encodes two gene products (G30 and G72) that are associated with DAAO. Furthermore, DAAO expression and enzyme activity has been reported to be increased in post mortem brain tissue samples from patients with schizophrenia compared to healthy controls. D-serine, a D-amino acid that is regulated by DAAO, is a potent, endogenous co-agonist of the N-methyl-D-aspartic acid (NMDA) receptor. Because NMDA receptor dysfunction is thought to be involved in the positive (psychotic), negative and cognitive symptoms in schizophrenia, there has been much interest in developing potent and selective DAAO inhibitors for the treatment of this disease. Several research reports have been published that describe the synthesis and biological effects of novel, selective, small molecule inhibitors of DAAO. Many of these compounds have been shown, when given systemically, to increase D-serine concentrations in the blood and brain. However, the efficacy of these compounds in behavioral assays that measure antipsychotic potential and pro-cognitive effects in laboratory animals has been inconsistent. This article highlights and reviews research advances for DAAO inhibitors published in peer reviewed journals

    The neurobiological basis of binge-eating disorder

    Get PDF
    AbstractRelatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms

    Probing embryonic tissue mechanics with laser hole-drilling

    Full text link
    We use laser hole-drilling to assess the mechanics of an embryonic epithelium during development - in vivo and with subcellular resolution. We ablate a subcellular cylindrical hole clean through the epithelium, and track the subsequent recoil of adjacent cells (on ms time scales). We investigate dorsal closure in the fruit fly with emphasis on apical constriction of amnioserosa cells. The mechanical behavior of this epithelium falls between that of a continuous sheet and a 2D cellular foam (a network of tensile interfaces). Tensile stress is carried both by cell-cell interfaces and by the cells' apical actin networks. Our results show that stress is slightly concentrated along interfaces (1.6-fold), but only in early closure. Furthermore, closure is marked by a decrease in the recoil power-law exponent - implying a transition to a more solid-like tissue. We use the site- and stage-dependence of the recoil kinetics to constrain how the cellular mechanics change during closure. We apply these results to test extant computational models.Comment: 23 pages with 9 figures (require color

    The risk of cryptorchidism among sons of women working in horticulture in Denmark: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Androgens are crucial for normal testicular descent. Studies show that some pesticides have estrogenic or antiandrogenic effects, and that female workers exposed to pesticides have increased risk of having a boy with cryptorchidism. The main objective of the present study was to investigate whether pregnant women exposed to pesticides due to their work in horticulture experience excess risk of having sons with cryptorchidism.</p> <p>Methods</p> <p>We conducted a cohort study of pregnant women working in horticulture using four cohorts including one cohort established with data from the departments of occupational medicine in Jutland and Funen and three existing mother-child cohorts (n = 1,468). A reference group was established from the entire Danish population of boys born in the period of 1986-2007 (n = 783,817). Nationwide Danish health registers provided information on birth outcome, cryptorchidism diagnosis and orchiopexy. The level of occupational exposure to pesticides was assessed by expert judgment blinded towards outcome status. Risk of cryptorchidism among exposed horticulture workers compared to the background population and to unexposed horticulture workers was assessed by Cox regression models.</p> <p>Results</p> <p>Pesticide exposed women employed in horticulture had a hazard ratio (HR) of having cryptorchid sons of 1.39 (95% CI 0.84; 2.31) and a HR of orchiopexy of 1.34 (0.72; 2.49) compared to the background population. Analysis divided into separate cohorts revealed a significantly increased risk of cryptorchidism in cohort 2: HR 2.58 (1.07;6.20) and increased risk of orchiopexy in cohort 4: HR 2.76 (1.03;7.35), but no significant associations in the other cohorts. Compared to unexposed women working in horticulture, pesticide exposed women had a risk of having sons with cryptorchidism of 1.34 (0.30; 5.96) and of orchiopexy of 1.93 (0.24;15.4).</p> <p>Conclusions</p> <p>The data are compatible with a slightly increased risk of cryptorchidism in sons of women exposed to pesticides by working in horticulture.</p

    Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

    Get PDF
    Elimination of pathogens is the basis of host resistance to infections; however, relationship between persisting pathogens and disease has not been clarified. Leishmania major infection in mice is an important model of host–pathogen relationship. Infected BALB/c mice exhibit high parasite numbers in lymph nodes and spleens, and a chronic disease with skin lesions, splenomegaly, and hepatomegaly, increased serum IgE levels and cytokine imbalance. Although numerous gene loci affecting these disease symptoms have been reported, genes controlling parasites’ elimination or dissemination have never been mapped. We therefore compared genetics of the clinical and immunologic symptomatology with parasite load in (BALB/c × CcS-11) F2 hybrids and mapped five loci, two of which control parasite elimination or dissemination. Lmr5 influences parasite loads in spleens (and skin lesions, splenomegaly, and serum IgE, IL-4, and IFNγ levels), and Lmr20 determines parasite numbers in draining lymph nodes (and serum levels of IgE and IFNγ), but no skin or visceral pathology. Three additional loci do not affect parasite numbers but influence significantly the disease phenotype—Lmr21: skin lesions and IFNγ levels, Lmr22: IL-4 levels, Lmr23: IFNγ levels, indicating that development of L. major-caused disease includes critical regulations additional to control of parasite spread

    Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis

    Get PDF
    Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes
    corecore